
Design and Specification of the
CoreASM Execution Engine and Plugins

Engine Version 1.3

(to be released)

Roozbeh Farahbod
info@coreasm.org

Draft: Friday 26th November, 2010 – Criticism welcome.

Copyright c© 2005 - 2010

www.coreasm.org

This document is based on:

R. Farahbod, CoreASM: An Extensible Modeling Framework & Tool Environment
for High-level Design and Analysis of Distributed Systems. Ph.D. thesis. Simon

Fraser University, Burnaby, Canada. 258 pp., 2009.

The CoreASM project is the result of a team effort with substantial contributions
by Dr. Vincenzo Gervasi, Dr. Uwe Glässer, George Ma, and Mashaal Memon.

www.coreasm.org
http://roozbeh.ca/downloads/RoozbehFarahbod-PhDThesis.pdf
http://roozbeh.ca/downloads/RoozbehFarahbod-PhDThesis.pdf

Acknowledgments

This work would not have been possible without the kind support and encourage-
ment of Dr. Uwe Glässer and Dr. Vincenzo Gervasi. Also, many ideas in this work
are the outcome of lengthy discussions with my dear friends and colleagues Mashaal
Memon and George Ma.

I would also like to express my gratitude to Dr. Robert Cameron, Dr. Lou Hafer,
Dr. Tom Shermer, and Michael Altenhofen for their valuable feedback and inspiring
discussions. I would like to specially thank Dr. Egon Börger for his thorough exami-
nation of this work and his suggestions, corrections, and remarks on the theoretical
and practical aspects of this work.

1

License and Copyright Notice

Copyright c© 2005 - 2010 retained by the authors.

This work is licensed under the
Creative Commons Attribution-NonCommercial-NoDerivs License .

To view a copy of this license, visit the following link:
http://creativecommons.org/licenses/by-nc-nd/2.0/ca/

2

http://creativecommons.org/licenses/by-nc-nd/2.0/ca/

Abstract

Model-based systems engineering naturally requires abstract executable specifica-
tions to facilitate simulation and testing in early stages of the system design process.
Abstraction and formalization provide effective instruments for establishing critical
system requirements by precisely modeling the system prior to construction so that
one can analyze and reason about specification and design choices and better un-
derstand their implications. There are many approaches to formal modeling of soft-
ware and hardware systems. Abstract State Machines, or ASMs, are well known for
their versatility in computational and mathematical modeling of complex distributed
systems with an orientation toward practical applications. They offer a good com-
promise between declarative, functional and operational views towards modeling of
systems. The emphasis on freedom of abstraction in ASMs leads to intuitive yet accu-
rate descriptions of the dynamic properties of systems. Since ASMs are in principle
executable, the resulting models are validatable and possibly falsifiable by experi-
ment. Finally, the well-defined notion of step-wise refinement in ASMs bridges the
gap between abstract models and their final implementations.

There is a variety of tools and executable languages available for ASMs, each
coming with their own strengths and limitations. Building on these experiences, this
work puts forward the design and development of an extensible and executable ASM
language and tool architecture, called CoreASM, emphasizing freedom of experimen-
tation and design exploration in the early phases of the software development process.
CoreASM aims at preserving the very idea of ASM modeling—the design of accurate
abstract models at the level of abstraction determined by the application domain,
while encouraging rapid prototyping of such abstract models for testing and design
space exploration. In addition, the extensible language and tool architecture of Core-
ASM facilitates integration of domain specific concepts and special-purpose tools into
its language and modeling environment.

CoreASM has been applied in a broad scope of R&D projects, spanning maritime
surveillance, situation analysis, and computational criminology. In light of these
applications, we argue that the design and implementation of CoreASM accomplishes
its goals; it not only preserves the desirable characteristics of abstract mathematical
models, such as conciseness, simplicity and intelligibility, but it also adheres to the
methodological guidelines and best practices for ASM modeling.

3

Contents

License and Copyright Notice 2

1 Introduction 7
1.1 Towards a Comprehensive Framework 8
1.2 The CoreASM Modeling Environment 11
1.3 Related Work . 13

2 Abstract State Machines 15
2.1 Basic ASMs . 15

2.1.1 Basic Definition . 16
2.1.2 State Transitions . 16
2.1.3 Transition Rules . 17
2.1.4 Interaction with Environment 18

2.2 Multi-Agent ASMs . 18
2.3 Control State ASMs . 20
2.4 The Railroad Crossing Example . 21

2.4.1 The Abstract Model . 21
2.4.2 The Executable Model . 23

3 CoreASM: Architectural Overview 27
3.1 CoreASM Components . 28
3.2 Engine Lifecycle . 30

3.2.1 Engine Initialization . 32
3.2.2 Loading Specification . 33
3.2.3 Execution of Specification . 35
3.2.4 Concurrently Running Agents 40

3.3 CoreASM Plugins . 41

4 CoreASM: The Kernel 44
4.1 The Abstract Storage . 44
4.2 The Interpreter . 50

4.2.1 Notation . 50
4.2.2 Kernel Expression Interpreter 54

4

4.2.3 Kernel Rule Interpreter . 55
4.2.4 Operators . 58

4.3 Rules and Updates . 59
4.3.1 Update Instruction Notation 59
4.3.2 Aggregation of Updates . 60
4.3.3 Composition of Updates . 62

4.4 The Parser . 64
4.5 The Plugin Framework . 65

4.5.1 Parser Extensions . 65
4.5.2 Interpreter Extensions . 67
4.5.3 Abstract Storage Extensions 67
4.5.4 Scheduler Extensions . 68
4.5.5 Extension Point Plugins . 69
4.5.6 Plugin Service Interface . 71
4.5.7 Plugin Background . 72

5 CoreASM: The Plugins 73
5.1 Standard Rule Constructs . 74

5.1.1 Block Rule Plugin . 74
5.1.2 Conditional Rule Plugin . 74
5.1.3 The let-rule Plugin . 75
5.1.4 The extend-rule Plugin . 75
5.1.5 The choose-rule Plugin . 76
5.1.6 The forall-rule Plugin . 77
5.1.7 The case-rule Plugin . 77
5.1.8 The TurboASM Plugin . 78

5.2 Primitive Data Types . 83
5.2.1 The Predicate Logic Plugin . 83
5.2.2 The Number Plugin . 85
5.2.3 The String Plugin . 89

5.3 Collections . 91
5.3.1 The Collection Plugin . 91
5.3.2 The Set Plugin . 93
5.3.3 The Bag Plugin . 101
5.3.4 The List Plugin . 104
5.3.5 The Queue Plugin . 109
5.3.6 The Stack Plugin . 110
5.3.7 The Map Plugin . 111

5.4 Auxiliary Plugins . 114
5.4.1 The Signature Plugin . 114
5.4.2 The Scheduling Policies Plugin 118
5.4.3 IO Plugin . 119
5.4.4 Step Plugin . 122

5

CoreASM Documentation

5.4.5 The Observer Plugin . 124
5.4.6 Math Plugin . 124
5.4.7 The Time Plugin . 126
5.4.8 Property Plugin . 126

5.5 The JASMine Plugin . 127
5.5.1 Requirements and Limitations 128
5.5.2 Language Extensions . 129
5.5.3 Implementing JASMine . 136
5.5.4 A Simple Example . 139
5.5.5 Final Remarks . 140

6 Implementing CoreASM 141
6.1 The Architecture . 142
6.2 The CoreASM Engine . 143

6.2.1 The Kernel . 143
6.2.2 CoreASM Plugins . 147

6.3 User Interfaces and Tools . 148
6.3.1 CSDe . 149
6.3.2 Model Checking CoreASM Specifications 149

7 Conclusions and Perspectives 152
7.1 Significance of the Contribution . 153
7.2 Future Work . 154

A Supplementary Definitions 158
A.1 Abstract Storage . 158
A.2 Interpreter . 159
A.3 Scheduler . 161
A.4 Control API . 162
A.5 Plugins . 163

A.5.1 Choose Rule Plugin . 163
A.5.2 Forall Rule Plugin . 165
A.5.3 Predicate Logic Plugin . 166
A.5.4 Set Plugin . 168
A.5.5 Math Plugin . 171

B CoreASM Examples 174
B.1 The Railroad Crossing Example . 174
B.2 The Surveillance Scenario . 176

C Change List 182

Index 188

6

Chapter 1

Introduction

Computer-based systems are increasingly integrated into our day-to-day life. They
either control or provide platforms for our communication networks, transportation
facilities, economic markets, health-care systems, and safety and security facilities.
With the increasing complexity of these systems, efficient design and development
of high quality computational systems that faithfully conform to their requirements
are extremely challenging and the costs of design flaws and system failures are high.
Proper understanding of the requirements, precisely documenting design decisions,
and effectively communicating such decisions with the domain experts as early as
possible play important roles in the design of complex systems. These challenges call
for adoption of proper engineering methods and tools and have motivated the use of
formal methods in software engineering.

Abstraction and formalization provide effective instruments for establishing crit-
ical system requirements by precisely modeling systems prior to construction so that
one can analyze and reason about specification and design choices and better under-
stand their implications [7]. There are many approaches to formal modelling of soft-
ware and hardware systems. Abstract State Machines (ASMs) [20] are well known for
their versatility in computational and mathematical modelling of complex distributed
systems with an orientation toward practical applications. The ASM framework offers
a universal model of computation and serves as an effective instrument for analyz-
ing and reasoning about complex semantic properties of discrete dynamic systems.
For almost two decades, abstract state machines have been studied, practiced, and
applied in modeling and specification of systems to bridge the gap between formal
and pragmatic approaches. Combining common abstraction principles from compu-
tational logic, discrete mathematics, and the concept of transition systems, ASMs
have become a well-known method and assumed a major role in providing a solid
and flexible mathematical framework for specification and modeling of virtually all
kinds of discrete dynamic systems.

In addition, machine assistance plays an increasingly important role in making
design and development of complex systems feasible. Abstract executable specifi-
cations serve as a basis for design exploration and experimental validation through

7

1. Introduction CoreASM Documentation

simulation and testing. Model checking tools based on formal verification techniques
help with proving critical properties of systems and assuring “correctness” before
deployment.

There is a variety of tools and executable languages available for ASMs, each
coming with their own strengths and limitations. In this work, we critically look into
their interesting features and potential shortcomings with the goal of understanding
the requirements of a modeling language and tool environment that would support
high-level design and experimental validation of abstract machine models at the early
stages of design and development. Building on these experiences, this work puts
forward the design and development of an extensible and executable ASM language
and tool architecture, called CoreASM, emphasizing freedom of experimentation and
design exploration in the early phases of the software development process. CoreASM
aims at preserving the very idea of ASM modeling—the design of accurate abstract
models (ground models [12]) at the level of abstraction determined by the application
domain, while encouraging rapid prototyping of such models for conformance testing,
design space exploration, and experimental validation.

1.1 Towards a Comprehensive Framework

In light of such observations, a question naturally comes to mind: what does it take
to develop a comprehensive framework and tool environment for design and modeling
of complex distributed systems and what features should such a framework provide?
Building on our experience with a broad scope of applications spanning web services
architectures [35], computational criminology [31], maritime surveillance [36] and
situation analysis [30], we believe that the following set of requirements should be
satisfied by any such framework:

1. Simple and concise specifications
Specifications written in such a framework should be simple and concise to
be readable and understandable by both domain experts and system designers
and to facilitate reasoning about the design and the communication of design
concepts between those groups.

2. Precise semantic foundation
The modeling language of such a framework should come with a precise seman-
tic foundation as a prerequisite for analysis, validation and verification of the
models.

3. Freedom of abstraction
Such a framework should support writing of abstract and minimal specifications
that express the original idea behind the designs of systems at the same levels
of complexity and enable system designers to stress on the essential aspects of
their design rather than encoding the insignificant details.

4. Design exploration through fast prototyping
Exploring the problem space for the purpose of writing an initial specification

8

1. Introduction CoreASM Documentation

requires a language that emphasizes freedom of experimentation by minimizing
the need for encoding in mapping the problem space to a formal model. This
can be achieved by

• reducing the cost of encoding domain concepts to language concepts by
providing a rich set of abstract data structures, various domain-specific
concepts, and extensibility mechanisms for the tool environment and its
language,

• avoiding early commitments and encouraging rapid prototyping by sup-
porting creation of abstract and untyped models that can later be refined
into more concrete models.

5. Refinement of models
Support for abstraction should be paired with a well-defined refinement tech-
nique that allows the system designer to cross levels of abstraction and link the
models at different levels through incremental steps down to the final imple-
mentation (or the concrete model).

6. Executability of specifications
Executability of even fairly abstract and incomplete models is important to
allow experimental validation of the specifications at the early stages of design
and to improve communication with the stake-holders during the requirements
elicitation and analysis process.

7. Support for distributed models (multi-agent systems)
It is only natural to expect a framework for design and modeling of distributed
systems to explicitly support distributed and multi-agent design. This includes
support for the definition of agent programs (or processes), inter-agent interac-
tion mechanisms, and various scheduling policies.

8. Non-determinism
Non-determinism is useful as a means of abstracting away from details of compli-
cated and potentially deterministic algorithms. For example, non-deterministic
descriptions can be used in high-level modeling of the behavior of the environ-
ment.

Considering these requirements, we argue that the ASM formalism properly matches
our needs as the underlying formal framework for such a tool environment:

• Abstract state machine specifications are in fact rigorously-defined pseudo-code
programs on abstract data structures [20]. As a result, they support writing of
simple and concise specifications with a precise semantic foundation.

• ASM programs and the data structures can be fairly abstract1 and yet ASM
specifications are in principle executable.

1In ASMs arbitrary structures can be used to reflect the underlying notion of state [20, P. 22].

9

1. Introduction CoreASM Documentation

• The ASM framework comes with a sound and powerful notion of step-wise
refinement that helps the designer to structure the design of a system into
appropriate abstraction levels and link those levels down to the concrete model
(or code).

• The ASM formalism supports the design of distributed systems by providing two
classes of synchronous and asynchronous multi-agent abstract state machines.

• ASM supports non-determinism in two forms: a choose construct that conve-
niently abstracts from the details of scheduling, and the notion of read-only
monitored functions that are only updated by the environment of the system.

Looking at past experiences with ASM languages and modeling environments
and considering the requirements listed above, we reason that a comprehensive ASM
framework for design and analysis of distributed systems should:

1. come with a rich ASM language that supports both basic and distributed ASMs
with non-determinism (see Chapter 2);

2. offer a formal (preferably operational) specification of its language and simula-
tion engine that ensures

• precise semantics,

• preservation of pure ASM semantics, and

• executability of the language;

3. ensure freedom of experimentation through extensibility of the language and
its environment;

4. support interaction with the environment (e.g., external functions);

5. be implemented as an open framework under an open source license2 and using a
platform-independent language and architecture so that it can be later modified
or improved as needed by its users.

It would also be an advantage if such a framework provides a GUI (Graphical
User Interface) for simulation and debugging. The graphical interface can organize
the information relevant to state transitions into different views, visually highlight
inconsistencies of the model, and give the user the ability to compare and contrast
states and updates produced by different steps.

2http://www.opensource.org

10

http://www.opensource.org

1. Introduction CoreASM Documentation

Idle InitKernelnewCommand = init

Loading
Catalog

LoadCatalog
Loading

Core Plugins
LoadCorePlugins

CONTROL API

Initializing
Kernel

Figure 1.1: An Example of a Control State ASM

1.2 The CoreASM Modeling Environment

We take into account the requirements discussed above in the design and development
of CoreASM to offer one instantiation of such a comprehensive framework for high-
level design and analysis of distributed systems. In this section, we look into different
aspects of design and implementation of CoreASM and address some of the challenges
one may face during its development.

Formal Specification

There is no need to argue that the development of a reliable modeling framework for
design and analysis of distributed systems has to start with a formal (read precise)
specification of its language and tool architecture. Abstract state machines have been
extensively used for semantic foundations of various programming and system design
languages (see Chapter 2). While ASM specifications are primarily operational in na-
ture, they provide a good compromise between declarative, functional and operational
views toward modeling of languages and systems. Hence, it is only reasonable to use
ASMs in formal modeling of the CoreASM language and its simulation environment
(see Chapter 3).

We specify the CoreASM language (both its syntax and the corresponding se-
mantics) through the specification of an interpreter (in form of an abstract state
machine), therefore ensuring the executability of the language while providing its
formal semantics. The design of the simulation engine and its architecture are speci-
fied using Control State ASMs [20], a practical class of abstract state machines that
have an easy-to-understand graphical representation (see Figure 1.1 for an example).

Extensible Architecture

In order to provide a rich ASM language that preserves pure ASM semantics and
supports sequential and distributed ASMs with non-determinism, we closely follow

11

1. Introduction CoreASM Documentation

Plotter
+

Set
+

Number
+

List
+

CSDe

Custom
Application

Editor

Engine Plugins Applications

Mastermind
+

JASMine
+

CoreASM
Engine

...

...

S
ta

nd
ar

d
P

lu
gi

ns
C

us
to

m
 P

lu
gi

ns

Figure 1.2: CoreASM Extensible Architecture

the formal semantics and the definition of ASMs as provided by the ASM book [20].
However, this may not be enough. ASMs have been used in various domains, some of
which required the introduction of special rule forms and data structures into ASMs.
To follow the same spirit and to preserve this freedom of experimentation that comes
with ASMs, the CoreASM language has to be easily extensible by third parties so that
it can naturally fit into different application domains. In addition, to ensure freedom
of experimentation, we would like to allow various modeling tools and environments to
closely interact with the engine and also to let researchers experiment with variations
to the engine’s functionality. As a result, we propose a plugin-based architecture with
a minimal kernel for the CoreASM language and modeling environment to offer the
extensibility of both the language and its simulation engine. We start with a micro-
kernel (the core of the language and its engine) that contains the bare essentials, that
is, all that is needed to execute only the most basic ASM. We then implement most of
the constructs of the language and the functionalities of the engine through plugins
extending the kernel.

Language extensibility is not a new concept [70]. There are a number of program-
ming languages that support some form of extensibility from defining new macros to
the definition of new syntactical structures. However, what we are suggesting here is
the possibility of extending and modifying the syntax and semantics of the language,
keeping only the bare essential parts of the ASM language as static. In order to
achieve the this goal, CoreASM plugins should be able to extend the grammar of the
core language by providing new grammar rules together with their semantics (see
chapters 4 and 5). As a result, every time a CoreASM specification is being loaded,
based on the set of plugins that the specification uses, the engine builds a language
and a parser for that language to parse the specification. Since the set of all the
possible plugins and their grammar rules is not known at the design time (which

12

1. Introduction CoreASM Documentation

would otherwise defy the purpose of having a plugin-based architecture) one of the
challenges would be to to equip the engine with a fast parser generator capable of
generating parsers with look-ahead of more than one to allow the co-existence of more
than one grammar rule starting with the same pattern.

Implementation

To facilitate the integration of CoreASM with other complementary tools such as
symbolic model checking and automated test generation, the CoreASM engine should
have a sophisticated and well defined interface to its environment which provides an
API for various operations such as loading a CoreASM specification, starting an ASM
run, or performing a single execution step.

In order to have an open and platform-independent implementation of CoreASM,
the whole framework is implemented in Java under an open source license (see Chap-
ter 6). After considering various open source license models and looking at similar
open source projects, we decided to make CoreASM source code available under the
Academic Free License (AFL) version 3.03. AFL 3.0 is an open source license with no
reciprocal obligation to disclose source code; i.e., derivative works can be licensed un-
der other licenses, and the source code of those derivative works need not be disclosed.
Such a license provides a good compromise between the availability of the original
source code in a free form and the existence of potentially proprietary editions and
extensions in the industry.

1.3 Related Work

Machine assistance plays an increasingly important role in making practical systems
design feasible. Specifically, model-based systems engineering demands for abstract
executable specifications as a basis for design exploration and experimental validation
through simulation and testing. Thus, it is not surprising that there is a considerable
variety of executable ASM languages that have been developed over the years.

The first generation of tools for running ASM models on real machines goes back
to Jim Huggins’ interpreter written in C [50, 54] and, even further back, to the
Prolog-based interpreter by Angelica Kappel [58]. Other interpreters and compilers
followed: the lean EA compiler [5] from Karlsruhe University, the scheme-interpreter
[24] from Oslo University, and an experimental EA-to-C++ compiler developed at
Paderborn University. Besides practical work on ASM tools, conceptual frameworks
for more systematic implementations were developed. The work on the evolving
algebra abstract machine (EAM) [22], an abstract formal definition of a universal ASM
for executing ASM models, contributed to a considerably improved understanding of
fundamental aspects of making ASMs executable.

3http://www.opensource.org/licenses/afl-3.0.php

13

http://www.opensource.org/licenses/afl-3.0.php

1. Introduction CoreASM Documentation

Based on such experience, a second generation of more mature ASM tools and tool
environments was developed: AsmL (ASM Language) [66] and the Xasm (Extensible
ASM) language [2, 3] are both based on compilers, while the ASM Workbench [21],
AsmGofer [69], and Asmeta [39] provide ASM interpreters.

All the above languages build on predefined type concepts rather than the untyped
language underlying the theoretical model of ASMs. The most prominent of these
languages are Asmeta and AsmL. The Asmeta language, called AsmetaL, implements
all the constructs of basic, structured, and multi-agent ASMs as defined in [20],
but it is a fully typed ASM language with limited extensibility features. AsmL
is a strongly typed language based on the concepts of ASMs but also incorporates
numerous object-oriented features and constructs for rapid prototyping of component-
oriented software, thus departing in that respect from the theoretical model of ASMs;
rather it comes with the richness of a fully fledged programming language. Most
of these languages do not provide a run-time system supporting the execution of
distributed ASM models4; only Xasm (and Asmeta in a limited form) is designed for
systematic language extensions; however, the Xasm language itself diverts from the
original definition of ASMs and seems closer to a programming language.

For a comprehensive study of related work see [38].

4Only Asmeta and AsmGofer provide some sort of support for the execution of distributed ASMs.

14

Chapter 2

Abstract State Machines

Abstract State Machines (ASMs), originally known as Evolving Algebras, were first
introduced by Yuri Gurevich [48, 49] as a versatile mathematical method of modeling
discrete dynamic systems with the goal of bridging the gap between computation
models and specification methods. ASMs combine two well-known and fundamental
concepts of transition systems, to model the dynamic aspects of a system, and ab-
stract states, to model the static aspects at any desired level of abstraction. Egon
Börger [20] further developed ASMs into a systems engineering method that guides
the development of software and embedded hardware-software systems from require-
ments capture to their implementation.

Today, ASMs are well known for their versatility in computational and math-
ematical modeling of architectures, languages, protocols and virtually all kinds of
sequential, parallel and distributed systems with an orientation towards practical ap-
plications. The particular strength of this approach is the flexibility and universality
it provides as a mathematical framework for semantic modeling of functional require-
ments in terms of abstract machine models and their runs. Widely recognized appli-
cations of ASMs include semantic foundations of industrial system design languages
like the ITU-T standard for SDL [44, 26, 25, 55], the IEEE language VHDL [16, 15]
and its successor SystemC [67], programming languages like JAVA [71, 19], C# [14]
and Prolog [10, 11], Web service description languages [34, 33, 32], communication
architectures[45, 46], embedded control systems [18, 6, 17], et cetera.1

In this chapter we briefly recall the basic notions of ASMs as defined in [20] and
we use an example to illustrate the application of ASMs with CoreASM in modeling
industrial systems.

2.1 Basic ASMs

The original notion of ASMs, or basic ASMs, was defined to formalize simultane-
ous parallel actions of a single computing agent. This notion was later generalized

1See also the ASM website at www.asmcenter.org and the overview in [20].

15

www.asmcenter.org

2. Abstract State Machines CoreASM Documentation

to capture the formalization of multiple agents acting and interacting in an asyn-
chronous manner [20]. In this section, we focus on basic ASMs. Multi-agent ASMs
or Distributed ASMs are explored in the next section.

2.1.1 Basic Definition

A basic ASM M is a tuple of the form (Σ, I, R, PM) where:

• Σ is a signature; i.e., a finite set of function names f where each function has an
arity, which is the number of arguments that function takes. Nullary functions,
those with arity of zero, are called constants. The constants true, false, and
undef (representing the “undefined” value) are always defined.

• I is a set of initial states for signature Σ. A state A for Σ is a non-empty set X
(the superuniverse of A) together with an interpretation fA for each function
name f in Σ such that:

– if f is an n-ary function name, then fA : Xn 7→ X, and

– if c is a constant in Σ, then cA ∈ X.

Functions can be static or dynamic. Values of dynamic functions can change
from state to state.

• R is a set of rule declarations. In a given state, evaluation of a rule r ∈ R
produces an update set of updates of the form (l, v) where:

– l is a location. A location l in state A is a pair (f, 〈a1, . . . , an〉) where f is an
n-ary function name in Σ and a1, . . . , an are values from superuniverse X
(i.e., ∀i∈{1,...,n}ai ∈ X). The contents of a location l in A is fA(a1, . . . , an).

– v is a value of superuniverse X.

The meaning of an update (l, v) is that the content of location l has to be
changed to the value v.

• PM ∈ R is a distinguished rule of arity zero (no free variables), called the main
rule or the Program of machine M .

The superuniverse X is usually divided into smaller universes modeled by their
characteristic functions (unary relations). If D is a universe, then the set of all
elements of D is defined as {d | D(d) = true}.

2.1.2 State Transitions

ASM specifications describe how the state of the specified system evolves in time. A
computation of M , starting with a given initial state S0 ∈ I, results in a finite or
infinite sequence of consecutive state transitions of the form

16

2. Abstract State Machines CoreASM Documentation

S0

∆S0−→ S1

∆S1−→ S2

∆S2−→ · · · ,

such that Si+1 is obtained from Si, for i ≥ 0, by firing ∆Si on Si, where ∆Si denotes
a consistent finite set of updates computed by evaluating PM over Si.

An update set is called consistent if it does not have clashing updates that attempt
to assign different values to the same location. The result of firing a consistent update
set ∆Si on Si is a new state Si+1 with the same superuniverse as Si, such that for
every location l of Si we have:

Si+1(l) =
{
v, if (l, v) ∈ ∆Si

Si(l), otherwise.

2.1.3 Transition Rules

The program PM of an ASM M is defined by an ASM transition rule.2 Basic transi-
tion rules are as follows:

1. Skip rule: skip
Does nothing and evaluates into an empty update set.

2. Update rule: f(a1, . . . , an) := t
Updates the value of f(a1, . . . , an) to t. It evaluates into an update set of the
form {(f(a1, . . . , an), tA)} where A is the current state of the machine and tA

is the value of t in A.

3. Block rule: P par Q
Evaluates rules P and Q in parallel and the result is the union of the update
sets computed by P and Q.

4. Conditional rule: if φ then P else Q
If φ is true, this rule executes P , otherwise executes Q.

5. Let rule: let x = t in P
Assigns the value of t to x and executes P . The resulting update set is the
update set produced by P .

6. Forall rule: forall x with φ do P
Executes P in parallel for every x that satisfies φ. The resulting update set is
the union of all the update set produced by parallel execution of P over different
values of x.

2This is a pragmatically generalized definition based on the original definition of an ASM program
by [20] which defines an ASM [program] as a set of guarded transition rules.

17

2. Abstract State Machines CoreASM Documentation

7. Choose rule: choose x with φ do P ifnone Q
Non-deterministically (unless otherwise specified) chooses x satisfying φ and
executes P . If no such x exists, it executes Q.

8. Sequence rule: P seq Q
Execute P , if the update set produced by P is consistent, then execute Q in a
state which the updates of P are applied. The resulting update set U (based
on UP and UQ update sets of P and Q) is

U =
{
{(l, v) ∈ UP | l 6∈ locations(UQ)} ∪ UQ, if UP is consistent;
UP , otherwise.

9. Call rule: R(a1, . . . , an)
Execute the previously defined transition rule R with the given parameters. Pa-
rameters are passed in a call-by-name fashion; i.e., they are passed unevaluated.
ASM transition rules can be defined using the expression

R(x1, . . . , xn) = P

where R is the name of the new rule, P is a transition rule and the free variables
of P are included in x1, . . . , xn.

2.1.4 Interaction with Environment

M interacts with a given operational environment—the part of the external world
visible to M—through actions and events as observable at external interfaces, for-
mally represented by externally controlled functions. Intuitively, such functions are
manipulated by the external world rather than M itself. Of particular interest are
monitored functions. Such functions change their values dynamically over runs of
M , although they cannot be updated internally by agents of M . A typical example
is the abstract representation of global system time. In a given state S of M , the
global time (e.g., as measured by some external clock) is given by a monitored nullary
function now, taking values in a linearly ordered domain Time ⊆ Real. Values of
now increase monotonicly over runs of M .

2.2 Multi-Agent ASMs

Basic ASMs are extended to capture the formalization of multiple agents acting and
interacting in an asynchronous manner [20].3

An asynchronous multi-agent ASM (or DASM for Distributed ASM) MD is de-
fined by a dynamic set Agent of computational agents each executing its ASM. This

3A synchronous version of multi-agent ASMs also exists [20, Sec. 5], in which a set of agents
execute their own programs in parallel, synchronized by an implicit global system clock. Since
asynchronous ASMs are more general, we will not further explore synchronous ASMs in this survey.

18

2. Abstract State Machines CoreASM Documentation

set may change dynamically over runs of MD, as required to model a varying num-
ber of computational resources. Agents of MD normally interact with one another,
and typically also with the operational environment of MD, by reading and writing
shared locations of a global machine state.4

A DASM MD performs a computation step whenever one of its agents performs
a computation step. In general, one or more agents may participate in the same
computation step of MD. A single computation step of an individual agent is called
a move. In this model, moves are atomic. Naturally, conflicting moves must be
ordered so that they do not occur in the same step of MD.

A partially ordered run ρ of MD is given by a triple (Λ, A, σ) satisfying the
following four conditions (adopted from [49, Sec. 6.5]):5

1. Λ is a partially ordered set of moves, where each move has only finitely many
predecessors.

2. A is a function on Λ associating agents to moves such that the moves of any
single agent of M are linearly ordered.

3. σ assigns a state of M to each initial segment X of Λ, where σ(X) is the result
of performing all moves in X.

4. Coherence condition: If x is a maximal element in a finite initial segment X of
Λ and Y = X −{x}, then A(x) is an agent in σ(Y) and σ(X) is obtained from
σ(Y) by firing A(x) at σ(Y).

A partially ordered run defines a class of admissible runs of MD rather than
a particular run. In general, it may require more than one (even infinitely many)
partially ordered run to capture all admissible runs of MD. From the coherence
condition it follows that all linearizations of the same finite initial segment of a
run of MD have the same final state.6 The implication of the partially-ordered-run
semantics is illustrated by means of a simple but meaningful example.

Example: Door and Window Manager Assume two propositional variables,
door and window, where door = true means that ‘the door is open’ and window =
true means that ‘the window is open’. There are two distinct agents: a door-manager
d and a window-manager w.

4In principle, one may also compose a DASM of a number of agents, each operating on a part of
the state that is disjoint from the view of all the other agents, so that each agent has its own private
state.

5Here we recall our notes from [29].
6Intuitively, a finite initial segment of a partially ordered run ρ is a finite subset of Λ corresponding

to a (finite) prefix of ρ.

19

2. Abstract State Machines CoreASM Documentation

i

rule1

condn

cond1

rulen

j1

jn

.

Figure 2.1: Control State ASMs

Door/Window Managers

DoorManager ≡
if ¬window then door := true // move x

WindowManager ≡
if ¬door then window := true // move y

Initially (in state S0) both the door and the window are closed. Then there are
only two possible runs, and in each run only one of the agents makes a move.

We cannot have x < y because w is disabled in the state Sx obtained from S0

by performing x. Also, we cannot have y < x because d is disabled in the state Sy
obtained from S0 by performing y. Finally, we cannot have a run where x and y are
incomparable, that is neither x < y nor y < x. By the coherence condition, the final
state Sx,y of such a run would be obtained from either Sx by performing y or from
Sy by performing x; either case is impossible.

2.3 Control State ASMs

In this section we briefly look into control state ASMs, a frequently used class of
ASMs that represents a normal form of synchronous UML activity diagrams. This
particular class of ASMs is expressive enough to model many classical automata such
as various extensions of finite state machines, timed automata, push-down automata,
etc. It extends finite state machines by synchronous parallelism and by the possibility
to also manipulate data [20].

A control state ASM is an ASM whose rules are all of the form presented in
Figure 2.1.7 Such a control state ASM can be formulated in textual form by a
parallel composition of Finite State Machine (FSM) rules, where each FSM rule is
defined as:

FSM(i, if cond then rule, j) ≡
if ctl state = i and cond then

rule
ctl state := j

7See [20, Sec. 2.2.6]

20

2. Abstract State Machines CoreASM Documentation

Thus, the control state ASM of Figure 2.1 can be formulated as a parallel com-
position of the following FSM rules:

FSM(i, if cond1 then rule1, j1)
FSM(i, if cond2 then rule2, j2)
. . .
FSM(i, if condn then rulen, jn)

Since control state ASMs can be presented in graphical form with a precise se-
mantics, they are a good candidate for documenting functional requirements and
modeling of functional aspects of systems at the early stages of design and develop-
ment when proper communication of the requirements and the abstract model plays
a key role.

2.4 The Railroad Crossing Example

This section borrows the Railroad Crossing example of [20, Sec. 5.2.2] and offers a
CoreASM model of the example to illustrate the application of CoreASM (and ASM
in general) in modeling industrial systems.

A system controls a gate at a railroad crossing. There are multiple tracks on
which trains can travel in both directions. There are sensors on the tracks that can
detect if a train is coming or if it is currently crossing. The gate is controlled by two
signals open and close. The purpose of the system is to keep the gate closed if a train
is crossing (safety) and to keep it open otherwise (liveness).

2.4.1 The Abstract Model

We start our model by defining the universe of Track, initially set to include two
tracks track1 and track2. We model the semantics of sensor values by defining a uni-
verse of TrackStatus; since the set of values are limited and known at the beginning,
we model this universe as an enumerated universe. We also define an enumerated
universe GateState to capture two possible states of the gate: opened and closed.

universe Track = {track1, track2}
enum TrackStatus = {empty, coming, crossing}
enum GateState = {opened, closed}

The following function, trackStatus, holds the status of each track. Since there is only
one gate in our system, a nullary function gateState is defined to keep the current
state of the gate:

function trackStatus : Track -> TrackStatus

function gateState : -> GateState

21

2. Abstract State Machines CoreASM Documentation

The sensors are arranged such that when a train is detected as coming, it takes at
least dmin seconds for it to arrive at the crossing. The gate takes dclose seconds to be
closed and dopen to get opened. Thus, to keep the gate open as much as possible, if
we detect a train coming we have WaitTime = dmin − dclose seconds to start closing
the gate. Hence, there is an implicit deadline associated to every track t, indicating
the maximum time we have (with regard to track t) in order to safely close the gate.

function deadline : Track -> TIME

derived waitTime = dmin - dclose

The following nullary function gateSignal, controlled by the track control program,
signals the opening or closing of the gate.

enum GateSignal = {open, close}
function gateSignal : -> GateSignal

The Rail Road Crossing ASM consists of two basic ASMs, TrackControl and Gate-
Control, respectively controlling the tracks (sending signals to the gate controller)
and maintaining the state of the gate (opening or closing the gate in response to gate
signals). We assume that the environment sets the value of the function trackStatus
based on the track sensors data.

The track control program TrackControl is a parallel combination of two main
rules: 1) closing the gate if needed; i.e., for all tracks, calculating new deadlines,
sending a close signal if needed, and clearing passed deadlines; 2) opening the gate if
it is safe to do so. The program is defined as follows:8

rule TrackControl = {
forall t in Track do {

SetDeadline(t)

SignalClose(t)

ClearDeadline(t)

}
SignalOpen

}

where we have

rule SetDeadline(x) =

if trackStatus(x) = coming and deadline(x) = infinity then

deadline(x) := now + waitTime

rule SignalClose(x) =

if now >= deadline(x) and now <= deadline(x) + 1000 then

gateSignal := close

8In CoreASM, curly braces {} can be used to define parallel rule blocks.

22

2. Abstract State Machines CoreASM Documentation

rule ClearDeadline(x) =

if trackStatus(x) = empty and deadline(x) < infinity then

deadline(x) := infinity

rule SignalOpen =

if gateSignal = close and safeToOpen then

gateSignal := open

The predicate safeToOpen, used in the SignalOpen rule, can be defined as follows

safeToOpen ≡ ∀t ∈ Track trackStatus = empty ∨ deadline(t) > now + dopen

which is defined in CoreASM as

derived safeToOpen = forall t in Track holds

trackStatus(t) = empty or deadline(t) > (now + dopen)

The gate control program simply responds to gate signals by changing the state of
the gate:

rule GateControl = {
if gateSignal = open and gateState = closed then gateState := opened

if gateSignal = close and gateState = opened then gateState := closed

}

2.4.2 The Executable Model

In order to have a meaningful execution of the model, we need to define the initial
state of the system and simulate the behavior of the environment. So far we have
defined two parallel ASM agents to model track and gate controllers. In this section
we add two more agents to our model: an Environment agent to model the behavior
of the environment and an Observer agent to observe the statuses of tracks and the
gate and to provide a nicely formatted output throughout the simulation.9 So, the
universe of agents will be defined as:

universe Agents = {trackController, gateController, observer, environment}

The Environment

The environment agent simulates trains crossing over the tracks in a non-deterministic
fashion. If a train is detected as coming on a track, we have dmin time before it crosses
the intersection. Every train takes a certain time to pass the crossing; when that time
is reached, the environment sets the track status back to empty. The following rule
offers one possible definition of such an environment:

9However, we do not necessarily need to define these two agents in CoreASM. The environment can
be modeled by monitored functions reading input from the user, and the printout can be generated
using the Observer plugin presented in Section 5.4.5.

23

2. Abstract State Machines CoreASM Documentation

rule EnvironmentProgram =

choose t in Track do {
if trackStatus(t) = empty then

if random < 0.05 then {
trackStatus(t) := coming

passingTime(t) := now + dmin

}
if trackStatus(t) = coming then

if passingTime(t) < now then {
trackStatus(t) := crossing

passingTime(t) := now + 4000

}
if trackStatus(t) = crossing then

if passingTime(t) < now then

trackStatus(t) := empty

}

The Observer

The observer agent simply prints out the current state of the system. The following
observer program prints out the current time, the statuses of all tracks, and finally
the state of the gate. To keep the output lines in order, we enclose the print rules in
a sequence block.

rule ObserverProgram =

seqblock

print "Time: " + ((now - startTime) / 1000) + " seconds"

forall t in Track do

print "Track " + t + " is " + trackStatus(t)

print "Gate is " + gateState

print ""

endseqblock

The Initial State

In CoreASM, the initial state of the system can be defined in an operational form
using an init rule. The engine starts the execution of specifications by creating an
init agent and assigning the init rule as the program of that agent (see Section 3.2).
When the initial state is set up, the init agent can be de-activated by setting its
program to undef or removing it from the universe of agents.

In our example, we assume that initially the gate is open, all the tracks are empty
and track deadlines are set to positive infinity. The init rule, defined below, sets the
initial values of functions and assigns the programs of the agents.

24

2. Abstract State Machines CoreASM Documentation

init InitRule

rule InitRule = {
forall t in Track do {

trackStatus(t) := empty

deadline(t) := infinity

}
gateState:= opened

dmin:= 5000

dmax:= 10000

dopen:= 2000

dclose:= 2000

startTime:= now

program(trackController) := @TrackControl

program(gateController) := @GateControl

program(observer) := @ObserverProgram

program(environment) := @EnvironmentProgram

program(self) := undef

}

The Simulation

Finally, we have everything in place to execute the model in CoreASM and validate
the behavior of the gate controller (see Appendix B.1 for the full specification). The
execution provides a printout of the states of the system. The output shows that the
controller keeps the gate open while there is no train on the tracks and keeps it closed
as long as there is at least one train crossing the intersection. Figure 2.2 shows parts
of the output of one particular run of the system. As a result of the non-deterministic
behavior of the environment, different runs of the model most likely provide different
outputs.

It is worth to emphasize that although the ability to execute the model and
to observe its behavior enables us to validate the model by experiment, satisfying
results of such experiments by no means guarantee the “correctness” of the model.
Section 6.3.2 offers a brief discussion on this subject.

25

2. Abstract State Machines CoreASM Documentation

Time: 0.131 seconds
Track track2 is empty
Track track1 is empty
Gate is opened

...

Time: 4.531 seconds
Track track2 is coming
Track track1 is empty
Gate is opened

...

Time: 7.6 seconds
Track track1 is coming
Track track2 is coming
Gate is opened

Time: 8.027 seconds
Track track1 is coming
Track track2 is coming
Gate is closed

...

Time: 9.601 seconds
Track track1 is coming
Track track2 is crossing
Gate is closed

...

Time: 12.969 seconds
Track track1 is crossing
Track track2 is crossing
Gate is closed

...

Time: 13.814 seconds
Track track1 is crossing
Track track2 is empty
Gate is closed

...

Time: 16.886 seconds
Track track1 is crossing
Track track2 is empty
Gate is closed

Time: 17.197 seconds
Track track2 is empty
Track track1 is empty
Gate is opened

A train is coming on
track 2.

The gate is still kept
open.

The gate is closed
before trains cross

the intersection.

The train on track 2
is crossing.

The gate is kept
closed while there is

a train crossing.

The gate is opened
when it is safe.

Figure 2.2: Output of the Railroad Crossing Example in CoreASM

26

Chapter 3

CoreASM: Architectural
Overview

The CoreASM language and supporting tool architecture focus on early phases of
the software design process. In particular, the goal is to encourage rapid prototyp-
ing with ASMs, starting with mathematically-oriented, abstract and untyped models
and gradually refining them down to more concrete versions—a powerful technique
for specification with refinement that has been exploited in [20] and [13]. In this
process, we aim at maintaining executability of even fairly abstract models. Another
important characteristic that differentiates our endeavor from previous experiences
is the emphasis that we are placing on extensibility of the language. Historical de-
velopments have shown how the original, basic definition of ASMs from the Lipari
Guide [49] has been extended many times by adding new rule forms (e.g., choose) or
syntactic sugar (e.g., case). At the same time, many significant specifications need
to introduce special backgrounds1, often with non-standard operations. We want to
preserve in our language the freedom of experimentation that has proven so fruitful
in the development of ASM concepts, and, to this end, we have designed our architec-
ture around the concept of plugins that allows to customize the language to specific
needs.

The architecture of the CoreASM engine is partitioned along two dimensions (see
Figure 3.1).2 The first one identifies the main components of the CoreASM engine
and their relationships: a parser, an interpreter, a scheduler, and an abstract storage
(Figure 3.2). We will discuss these components in more detail in Section 3.1. The
second dimension, discussed in Section 3.3, distinguishes between what is in the kernel
of the system—thus implicitly defining the extreme bare bones of the model—and
what is instead provided by extension plugins.

1We call background a collection of related domains and relations packaged together as one logical
unit.

2This chapter builds on and significantly extends what we have previously published in [28, Section
2].

27

3. CoreASM: Architectural Overview CoreASM Documentation

Parser SchedulerAbstract StorageInterpreter

Kernel

Sets

. . .

For-all

Complex Numbers

. . .

Probabilistic Choose

All-first

Round-robin

Priority Based

...

...
St

an
da

rd
 li

br
ar

y
C

us
to

m
 e

xt
en

si
on

s

Rules

Backgrounds

Policies

Figure 3.1: Layers and Modules of the CoreASM Engine

These two dimensions correspond to what in the ASM literature have been called
modular decomposition and conservative refinement respectively [13].3 In particular,
our plugins progressively extend (potentially in a conservative way) the capabilities of
the language accepted by the CoreASM engine, in the same spirit in which successive
layers of the Java [71] and C# [14] languages have been used to structure the language
definition into manageable parts.

In this chapter we provide an overview of the architecture of the CoreASM engine
and present its components. We also explore the execution lifecycle of the engine and
its control state model, and discuss the micro-kernel approach to the design of the
engine and its extensibility mechanisms.

3.1 CoreASM Components

The CoreASM engine consists of four components: a parser, an interpreter, a sched-
uler, and an abstract storage (Figure 3.2). The interpreter, the scheduler, and the
abstract storage work together to simulate an ASM run. The engine interacts with
the environment through a single interface, called the Control API, which provides
various operations such as loading a CoreASM specification, starting an ASM run, or
performing a single step.

The parser reads a CoreASM specification and generates annotated abstract syntax
trees for rules (programs) and definitions of the specification. Each node in these
trees may have a reference to the plugin that provides the corresponding syntax. For
example, in Figure 3.3, there are nodes that belong to the backgrounds of sets and

3While CoreASM plugins are expected to extend the engine mostly through a conservative refine-
ment, the CoreASM architecture does not restrict the plugins to such a refinement.

28

3. CoreASM: Architectural Overview CoreASM Documentation

 Applications / Drivers

Testing
Environment

Graphical UI
Verification

Environment

Control API

Abstract
Storage Interpreter

Scheduler

Parser

CoreASM Engine

Figure 3.2: Overall Architecture of CoreASM

Booleans; this information will be used by the interpreter and the abstract storage to
perform operations on these nodes with respect to the background each node comes
from.

The interpreter, executes programs and rules, possibly calling upon background
plugins to perform expression evaluation, and upon rules plugins to interpret certain
rule forms. It obtains an annotated parse tree from the parser and generates a
multiset of update instructions, each of which represents either an update, or an
arbitrary instruction which will be processed at a later stage by corresponding plugins
to generate actual updates (as will be described in more detail on page 39)4. The
interpreter interacts with the abstract storage to retrieve data from the current state
and by executing statements it gradually creates the update set leading to the next
state.

The abstract storage manages the data model for the abstract state; in particu-
lar, it maintains a representation of the current state of the machine that is being
simulated. The state is modeled as a map from locations to opaque elements of a uni-
verse Element. The abstract storage also provides interfaces to retrieve values from
a given location in the current state and to apply updates. To evaluate a program,
the interpreter interacts with the abstract storage in order to obtain values from the
current state and generates updates for the next state. In addition, abstract storage
also provides auxiliary information about the locations of the current state, such as
the ranges and domains of functions or the background to which a particular function
or value belongs to.

4Where no confusion can arise, in the rest of this document we use the generic term “updates”
to refer both to actual updates and to update instructions.

29

3. CoreASM: Architectural Overview CoreASM Documentation

Figure 3.3: Sample Annotated Parse Tree

Finally, the scheduler orchestrates every computation step of an ASM run. In a
basic ASM, the scheduler merely arranges the execution of a step: it receives a step
command from the Control API, invokes the interpreter, and instructs the abstract
storage to aggregate the update instructions and fire (apply to the state) the resulting
update set (if consistent) when the interpreter finishes the evaluation of the program.
It then notifies the environment through the Control API of the results of the step.

For distributed ASMs [20], the scheduler also organizes the execution of agents
in each computation step. At the beginning of each DASM computation step, the
scheduler chooses a subset of agents which will contribute to the next computation
step of the machine. The scheduler directly interacts with the abstract storage to
retrieve the current set of agents, to assign the current executing agent, and to collect
the update set generated by the interpretation of all the agents’ programs. Updates
are then fired and the environment is notified as for the previous case.

3.2 Engine Lifecycle

The process of executing a CoreASM specification in the CoreASM engine consists of
the following steps:

1. Initializing the engine (Figure 3.4)

(a) Initializing the kernel
(b) Loading the plugins library catalogue
(c) Loading and activating core plugins

2. Loading a CoreASM specification (Figure 3.5)

(a) Parsing the specification header
(b) Loading required plugins as declared in the specification
(c) Parsing the specification body

30

3. CoreASM: Architectural Overview CoreASM Documentation

(d) Initializing the abstract storage
(e) Setting up the initial state5

3. Execution of the specification

(a) Execute a single step
(b) If termination condition is not met, repeat from 3a.

The execution process of a single step in the CoreASM engine is as follows (refer
also to Figures 3.6 to 3.9 in Section 3.2): The Control API sends a step command to
the scheduler. (i) The scheduler gets the whole set of agents from the abstract storage.
(ii) It selects a subset of these agents to participate in the next computation step.
(iii) One by one, the scheduler selects and removes agents from this set and assigns
them to the special variable self in the abstract storage.6 (iv) The scheduler then
calls the interpreter to run the program of the current agent (retrieved by accessing
program(self) in the current state). (v) The interpreter evaluates the program.7

(vi) When the evaluation of the program is complete, the interpreter notifies the
scheduler. (vii) The scheduler gathers the computed update set and repeats from
step (iii) until there is no agent left in the set. When all the agents are executed, the
scheduler calls the abstract storage to apply the accumulated updates to the state.
(viii) If the update set is inconsistent, the abstract storage notifies the scheduler and
the notification may lead to selection of a different subset of agents to be executed.8

If the update set is applied successfully, the Control API is notified of the successful
step.

At the end of the execution of each step, the resulting state is optionally made
available by the abstract storage module for inspection through the Control API. The
termination condition can be set through the user interface of the CoreASM engine,
choosing between a number of possibilities (e.g., a given number of steps are executed;
no updates are generated; the state does not change after a step; an interrupt signal
is sent through the user interface).

In the following sections, we present a high-level but precise specification of the
execution process which was presented informally at the beginning of this section.
The structure of the specification is that of a control state ASM [20, Sec. 2.2.6]9,
as shown in Figures 3.4 to 3.9. The current state of such ASM is given by the
variable engineMode that controls the execution of rules at any step. The ASM rules
corresponding to the control state ASM are also presented.

5This ensures that there is at least one agent in the state, the program of that agent being the
rule marked with init and that agent will contribute to the first step of the simulation.

6This is done implicitly by assigning the agent as the value of executingAgent. See Section 3.2.3.
7This may include a series of interactions between the interpreter and the abstract storage to get

values from the current state, which in turn may require interpreting other code fragments, e.g., for
derived functions.

8The engine can also report (e.g. in a log file) the set of agents whose updates produced an
inconsistent update set.

9In fact we are using a variant of control state ASMs; see Section 4.5.5 for more details.

31

3. CoreASM: Architectural Overview CoreASM Documentation

Idle InitKernelnewCommand = init

Loading
Catalog

LoadCatalog
Loading

Core Plugins
LoadCorePlugins

CONTROL API

Initializing
Kernel

Figure 3.4: Control State ASM of Initializing CoreASM Engine

3.2.1 Engine Initialization

The CoreASM engine starts its execution in the Idle state (Figure 3.4). In this state,
the engine simply waits for a control command, such as init or step, from the envi-
ronment which could be an interactive GUI or a debugger, to start the corresponding
task.

Receiving an init command (Figure 3.4) will change the state of the engine to
Initializing Kernel in which the engine initializes its kernel, loads its plugin catalog
(the set of all the plugins available to the engine), and finally loads the core plugins.
The following rules in Control API abstractly define these tasks. We refer the reader
to Section 4.5 for more details on loading plugins.

Control API

InitKernel ≡
pluginCatalog := {}
loadedPlugins := {}
grammarRules := {}
specification := undef
isStateInitialized = false

LoadCatalog ≡
forall pName in availablePlugins do

let p = createPlugin(pName) in
add p to pluginCatalog

LoadCorePlugins ≡
forall p in corePlugins do

LoadPlugin(p)

In order to keep the model consistent, some of the functionalities of the CoreASM
kernel can be encapsulated in special core plugins. For example, in Section 4.3 we will
see how plugins can contribute to the aggregation of updates after every computation
step. However, there is also a default aggregation behavior that must be provided

32

3. CoreASM: Architectural Overview CoreASM Documentation

Idle

Loading
Plugins

LoadSpecPlugins

CONTROL API

Parsing Header ParseHeader

PARSER

Parsing Spec ParseSpecification

Initializing
State

InitAbstractStorage

ABSTRACT STORAGE SCHEDULER

Preparing
Initial State

PrepareInitialState

newCommand ∈
{load, parse, parseHeader}

newCommand =
parseHeader

ClearLoadedData

yes

newCcommand = parse
yes

no

no

Figure 3.5: Control State ASM of Loading a CoreASM Specification

by the kernel itself. By encapsulating that default behavior in a special core plugin
(Kernel plugin), we are able to reduce the complexity of the aggregation process and
specify it in a simple and concise form. So far, the set corePlugins consists of only
one plugin; i.e. corePlugins = {kernelPlugin}.

3.2.2 Loading Specification

Receiving a load command causes the engine to load a new specification (Figure 3.5).
The engine first clears previously loaded data, reads the specification file and then
parses the specification header to get the list of specific plugins required to be loaded.

Control API

ClearLoadedData ≡
if specHasBeenLoaded then

seq
loadedPlugins := {}
grammarRules := {}
specification := getSpecification(newCommand)

next
LoadCorePlugins

where
specHasBeenLoaded ≡ |loadedPlugins| > |corePlugins|

Parser

ParseHeader ≡
specPlugins := requestedPlugins(specification)

Loading the required plugins is done in two steps. First, all the package plugins

33

3. CoreASM: Architectural Overview CoreASM Documentation

(plugins that are basically a set of other plugins) are expanded and their enclosed
plugins are added to the list of required plugins. In the next step, plugins are loaded
one by one according to their loading priority.

Control API

LoadSpecPlugins ≡
seq
// 1. expanding package plugins

forall p in specPlugins do
if isPackagePlugin(p) then

forall p′ in enclosedPlugins(p) do
add p′ to specPlugins

next
// 2. loading plugins with the maximum load priority first

while |specPlugins\loadedPlugins| > 0 do
let toLoad = specPlugins\loadedPlugins in

choose p in toLoad with maxPriority(p, toLoad) do
if requiredPlugins(p) ⊂ specPlugins then

LoadPlugin(p)
else

Error(‘Cannot load plugin.’)

After all the required plugins are loaded, the specification is parsed using the
grammar rules provided by the plugins. The root node of the resulting parse tree is
kept for future references.

Parser

ParseSpecification ≡
rootNode(specification)← Parse(specification, grammarRules)

To prepare the engine for the first simulation step, Abstract Storage is initialized
taking into account all plugins contributions, such as backgrounds, universes, func-
tions, and macro rules. A universe of Agents and a function program that assigns
programs to agents are also created in this step. See page 67 for the definition of
LoadVocabularyPlugins.

Abstract Storage

InitAbstractStorage ≡
let newState = new(State) in

state := newState
InitializeState(newState)
LoadVocabularyPlugins(newState)

34

3. CoreASM: Architectural Overview CoreASM Documentation

InitializeState(state) ≡
let u = new(UniverseElement) in

stateUniverse(state, “Agents”) := u
let f = new(FunctionElement) in

stateFunction(state, “program”) := f
executingAgent := undef // holds the value of ‘self’ in the simulated machine
stepCount := 0

Finally, an initial state is created with at least one agent that, in the first step of
the simulation, will run the init rule as its main program. In addition, based on the
set of plugins used by the specification, a scheduling policy will also be chosen by the
scheduler.10

Scheduler

PrepareInitialState ≡
LoadSchedulingPolicy
let a = new(Element) in

initAgent := a
SetValue((“Agents”, 〈a〉), truee)
SetValue((“program”, 〈a〉), initRule)

Alternatively, an external application may ask the engine to only parse the spec-
ification (and not loading it). This is useful when an application needs to use only
the parsing functionality of the engine, for example to work on a parse-tree view of
a specification. In this case, the last two steps of initializing state and preparing the
initial state will be skipped. Also, an application can query the list of plugins required
by a given specification by sending a parseHeader command. In this case, the engine
does not parse the specification and stops after loading the required plugins.

3.2.3 Execution of Specification

A step command triggers the start of a computation step; this is performed by chang-
ing the control state to Starting Step which then transfers the control flow to the
scheduler.

The StartStep rule in the scheduler initializes updateInstructions (the multiset
of accumulated update instructions for the current step) and selectedAgentsSet (the
set of agents selected to perform computation in the current step) and assigns the
current set of agents in the simulated machine to agentSet by querying the abstract
storage module for the current value of Agents and only picking those agents whose
program is not undefined. We model the query process through the abstract function
getValue(l) which takes a location l and retrieves the value of the location from the
simulated state. We use the notation “term” to denote the quoted variable or literal
term term in the simulated machine. Based on the retrieved set of agents, a new

10We refer the reader to Appendix A.3 for more details.

35

3. CoreASM: Architectural Overview CoreASM Documentation

Idle

NotifyFailure

newCommand = step

Step
Succeeded

NotifySuccess

CONTROL API

Step
Failed

Scheduler

Starting Step

Figure 3.6: Control State ASM of a step command: Control API Module

Abstract Storage

|agentSet| ≥ 1

Choosing
Agents

Control API

Step
Succeeded

SelectAgents

Abstract Storage

Initializing
SELF

AggregationChooseAgent

Choosing
Next Agent

AccumulateUpdates

chosenAgent = undef

Interpreter

Program
Execution

Initiating
Execution

InitiateExecution

Control API

Step
Failed

Update
Failed

HandleFailedUpdate morePossibleSets

StartStepStarting Step
Selecting
Agents

yes

no

yes

no

no

yes

SCHEDULER

CreateSchedule

isSingleAgent
Inconsistent

yesno

Figure 3.7: Control State ASM of a step command : Scheduler

schedule is then created by CreateSchedule. The control state is then changed to
Selecting Agents.

Scheduler

StartStep ≡
updateInstructions := {||}
selectedAgentsSet := {}
if stepCount < 1 then

agentSet := {initAgent}
else

agentSet := {a|a ∈ getValue((“Agents”, 〈〉)) ∧ getValue((“program”, 〈a〉)) 6= undefe}

36

3. CoreASM: Architectural Overview CoreASM Documentation

CreateSchedule ≡
if schedulingPolicy 6= undef then

let R = newScheduleRule(schedulingPolicy) in
schedule← R(schedulingGroup, agentSet)

In the Selecting Agents state, if no agent is available to perform computation, the
step is considered complete; otherwise, the SelectAgents rule chooses a set of agents
to execute in the current step. If there is no scheduling policy provided by any of the
plugins, a non-deterministic subset of the agents is chosen; otherwise, the selected
agents will be determined by the current scheduling policy. The ChooseAgent rule
chooses an agent from this set and changes the state to Initializing SELF which leads
to the execution of the SetChosenAgent rule in the abstract storage module. After the
execution of the agent, the computed updates are accumulated by AccumulateUpdates
rule in the Choosing Next Agent state, and control state is changed back to Choosing
Agent until all selected agents have been executed.

Scheduler

SelectAgents ≡
if schedulingPolicy = undef then

choose s with s ⊆ agentSet ∧ |s| ≥ 1 do
selectedAgentsSet := s

else
selectedAgentsSet := head(schedule)
schedule := tail(schedule)

ChooseAgent ≡
choose a in selectedAgentsSet do

remove a from selectedAgentsSet
chosenAgent := a

ifnone
chosenAgent := undef

AccumulateUpdates ≡
add updates(root(chosenProgram)) to updateInstructions

Two rules in the abstract storage module take care of setting the chosen agent and
of retrieving the program associated with the chosen agent (by accessing program(self)
in the simulated state). Control then moves back to the scheduler at Initiating
Execution.

Abstract Storage

SetChosenAgent ≡
executingAgent := chosenAgent

GetChosenProgram ≡
chosenProgram := getValue((“program”, 〈executingAgent〉))

37

3. CoreASM: Architectural Overview CoreASM Documentation

Control API

Scheduler

Scheduler

Initializing
SELF

Initiating
Execution

Aggregation

Step
Succeeded

consistent(updateSet)

Update
Failed

SetChosenAgent GetChosenProgram

AggregateUpdates

FireUpdateSet

True

False

ABSTRACT STORAGE

Figure 3.8: Control State ASM of a step command : Abstract Storage

Scheduler

parent(pos) = undef Program

Execution
Choosing

Next Agent ExecuteTree True

False

INTERPRETER

Figure 3.9: Control State ASM of a step command : Interpreter

The execution of the program of the chosen agent is initiated in the Initiating Ex-
ecution state in the scheduler and then starts in the Program Execution state in the
interpreter. During the execution, computed update instructions are progressively
added to updateInstructions, and when all selected agents have performed their com-
putation, control moves to Aggregation state in the abstract storage, where the final
update set is calculated and then applied to the current state.

Extending the basic idea presented in [71], we interpret a program by associating
values, updates and locations to nodes in the parse tree of the program. Before
actually starting the interpreter, previously computed values are removed by the
InitiateExecution rule, and the current position in the tree (denoted by the nullary
function pos) is initialized to the root node of the tree that represents the current
program (that is, the program of the current agent, as established above).

Scheduler

InitiateExecution ≡
let p = root(chosenProgram) in

ClearTree(p)
pos := p

The specification of the interpreter is explored in detail in Section 4.2. We do
not include here the full specification for the interpreter; we show instead its most
interesting feature, that is the way it interacts with rule and background plugins to
delegate interpretation of the associated extensions. To do this, we slightly extend

38

3. CoreASM: Architectural Overview CoreASM Documentation

the ASM framework to include ASM rules (programs) as elements of the state; i.e.
we assume that ASM rules are elements of the domain Rule and that they can be
treated as terms and so can be assigned as values of functions.

As already discussed earlier, nodes of the parse tree corresponding to grammar
rules provided by a plugin are annotated with the plugin’s identifier. The annota-
tion process is done during parsing, but here we abstract from the details of how
it is implemented, and use instead an oracle function plugin(node) for this purpose.
While interpreting the parse tree (see ExecuteTree below), if a node is found to re-
fer to a plugin, rules provided by that plugin are obtained through the pluginRule
function and executed; otherwise, the kernel interpreter rules (see Section 4.2) are
used. Results of the interpretation of node pos are stored alongside the node, and
accessed by three functions: value(pos) returns the computed value for an expression
node, updates(pos) returns the set of updates generated by a rule node, and loc(pos)
returns the location denoted by the node (which is used as lhs-value for assignments).
Section 4.2.1 presents a more precise definition of these functions.

Interpreter

ExecuteTree ≡
if ¬evaluated(pos) then

if plugin(pos) 6= undef then
let R = pluginRule(plugin(pos)) in
R

else
KernelInterpreter

else
if parent(pos) 6= undef then
pos := parent(pos)

After executing the programs of all the selected agents, all the update instructions
will have been accumulated in updateInstructions. Control will move from Choosing
Agent in the scheduler to Aggregation in the abstract storage module. In the Aggre-
gation state, the abstract storage aggregates update instructions to compute updates
on the locations of the state (see Section 4.3.2 for details), checks the consistency
of the computed updates (possibly interacting with the relevant background plugins
to evaluate equality), and either applies the updates to the current state through
FireUpdateSet (thus obtaining the next state), or provides an indication of failure by
changing the state to Update Failed.

Abstract Storage

AggregateUpdates ≡
updateSet ← Aggregate(updateInstructions)

FireUpdateSet ≡
forall (l, v) ∈ updateSet do

SetValue(l, v)

39

3. CoreASM: Architectural Overview CoreASM Documentation

In the earlier versions of CoreASM [27], if an inconsistent set of updates would
be generated in a step, the HandleFailedUpdate rule in the scheduler module would
prepare a different subset of agents for execution, and the step would be re-initiated.
As a result, if a single agent would produce inconsistent updates, instead of reporting
the inconsistency as an error, that agent would be removed from the set of computing
agents. We later improved the control flow so that an update fails if the inconsistent
set of updates are produced by a single agent. Otherwise, if the inconsistency is
between two updates from two different agents, other combinations of agents are
tried and the process is iterated until either a consistent set of updates is generated,
in which case the computation proceeds to the Step Succeeded state of the Control
API, or all possible combinations have been exhausted, in which case controls moves
to the Step Failed state. It should be noted that the selection will also consider subsets
containing a single agent, so the process fails only when no agent can successfully
perform a step.

Depending on the outcome of the previous stage, either of the rules NotifySuc-
cess or NotifyFailure of the Control API notify the environment of the success or
failure of the step, and return to the Idle state awaiting further commands from the
environment (e.g., another step command to continue the computation).

Control API

NotifySuccess ≡
stepCount := stepCount + 1

3.2.4 Concurrently Running Agents

We can abstract away from the details of interleaved execution of selected agents in
every step of the simulation and model the process in a parallel form. This abstraction
is beneficial as it removes the unnecessary sequential order of the execution of agents,
hence avoiding over-specification of the engine, and it allows for a more efficient
implementation of the engine by a) removing the explicit control flow loop around the
interpretation of single parse tree nodes (see Figure 3.9) and b) enabling concurrent
execution of agents on multi-processor machines.

In order to run agent programs in parallel, every function and rule related to
the interpretation of the programs should be parameterized by the agents accessing
them. As a result, the control state diagram of the scheduler will be reduced to
that of Figure 3.10. The RunAgentPrograms rule in the diagram will directly use a
parameterized version of the ExecuteTree rule, thereby eliminating the control state
diagram of the interpreter.

40

3. CoreASM: Architectural Overview CoreASM Documentation

Abstract Storage

|agentSet| ≥ 1
Running
Agents

Control API

Step
Succeeded

SelectAgents

Aggregation

Control API

Step
Failed

Update
Failed HandleFailedUpdate morePossibleSets

Starting Step
Selecting
Agents

yes

no

noyes

SCHEDULER

CreateSchedule

isSingleAgent
Inconsistent

yes
no

Run Agent Programs

StartStep

Figure 3.10: Revised Control State ASM of a step command: Concurrent Scheduler

Scheduler

RunAgentPrograms ≡
forall a ∈ selectedAgentsSet do

let p = getValue((“program”, 〈a〉)) in
seq

pos(a) := root(p)
ClearTree(p)

seq
while ¬isEvaluated(root(p)) do

ExecuteTree(a)
next
add updates(root(p)) to updateInstructions

3.3 CoreASM Plugins

In keeping with the micro-kernel spirit of CoreASM, most of the functionality of the
engine is implemented through plugins to a minimal kernel. In principle, there are
three basic dimensions being considered for extending and altering CoreASM by means
of plugins, respectively related to: (i) data structures, (ii) control structures, and (iii)
the execution model.

i) The possibility of conveniently extending data structures as needed is exten-
sively discussed in the theoretical ASM literature, e.g. in [9, 8], where the con-
cept of background refers to an implicitly given part of an abstract machine
state, assuming that it provides whatever standard means are normally sup-
posed to be available in a given application context [9]. Plugins extending the

41

3. CoreASM: Architectural Overview CoreASM Documentation

data structures of the engine provide all that is needed to define and work with
new backgrounds, namely (a) an extension to the parser defining the concrete
syntax (operators, literals, static functions, etc.) needed for working with el-
ements of the background; (b) an extension to the abstract storage providing
encoding and decoding functions for representing elements of the background for
storage purposes, and (c) an extension to the interpreter providing the seman-
tics for all the operations defined in the background. The Set plugin, presented
in Section 5.3.2, is an example of a background plugin (see Figure 3.1).

ii) Plugins can extend the control structures of CoreASM with respect to both
new syntactic constructs that are semantically meaningful and those that only
provide syntactic sugar (i.e., the semantics of which could also be expressed
by means of in-language transformations). These plugins provide specific rule
forms, with the understanding that the execution of a rule always results in a
(possibly empty) set of updates. Thus, they include (a) an extension to the
parser defining the concrete syntax of the rule form; (b) an extension to the
interpreter defining the semantics of the rule form.

iii) Finally, the need for altering or extending the execution model is justified by
pragmatic considerations. The execution model refers to dynamic features of
CoreASM, including scheduling policies, exception handling, and instrumenta-
tion of program execution for analytical purposes. Plugins can alter the exe-
cution model of the engine either by providing new scheduling policies to the
scheduler, used to determine at each step the next set of agents to execute, or
by extending the control sate ASM of the engine. See Section 4.5.5 for more
details.

In CoreASM, the kernel (see Figure 3.1) only contains the bare essentials, that
is, all that is needed to execute only the most basic ASM. As the state of an ASM
machine is defined by functions and universes, the two domains of functions and
universes are included in the kernel. Universes are represented through their charac-
teristic functions, hence Booleans are also included in the kernel. As an ASM program
is defined by a finite number of rules, the domain of rules is also included in the ker-
nel. It should be noted that the kernel includes the above mentioned domains, but
not all of the expected corresponding backgrounds. For example, while the domain of
Booleans (that is, true and false) is in the kernel, the Boolean algebra (∧, ∨, ¬, etc.)
is not, and is instead provided through a background plugin. In the same vein, while
universes are represented in the kernel through set characteristic functions, the back-
ground of finite sets is implemented in a plugin, which provides expression syntax for
defining them (see the example in Figure 3.3), as well as an implicit representation
for storing sets in the abstract state, and implementations of the various set theoretic
operations (e.g., ∈) that work on such implicit representation.

The kernel includes only two types of rules: assignment and import. This partic-
ular choice is motivated by the fact that without updates established by assignments

42

3. CoreASM: Architectural Overview CoreASM Documentation

there would be no way of specifying how the state should evolve, and that import
has a special role in introducing new elements to the state. All other rule forms (e.g.,
if, choose, forall), as well as sub-machine calls and macros, are implemented as
plugins in a standard library.

Finally, there is a single scheduling policy implemented in the kernel, namely the
pseudo-random selection of an arbitrary set of agents at a time, which is sufficient
for multi-agent ASMs where no assumptions are made on the scheduling policy.

As already mentioned, the CoreASM engine is accompanied by a standard library of
plugins including the most common backgrounds and rule forms (i.e., those defined
in [20]), an extension library including a small number of specialized backgrounds
and rules, and by a set of specifications for writing new plugins that can easily be
integrated in the environment. Extension plugins must be explicitly imported into
an ASM specification by an explicit use directive.

The plugin framework is further discussed in Section 4.5.

43

Chapter 4

CoreASM: The Kernel

In this chapter, we look into the details of the CoreASM kernel and its four compo-
nents. We formally define the interfaces of these components in form of functions
and operations (ASM rules). In case of the Abstract Storage, we present the initial
structure of simulated states in CoreASM and formally define the elements of which
it consists of. We then provide a detailed specification of the Interpreter, building
on the ExecuteTree rule we presented in Section 3.2. In Section 4.3, we look into the
concepts of rules and updates in CoreASM and finally conclude this chapter with an
overview of the CoreASM plugin framework.

4.1 The Abstract Storage

Abstract Storage maintains a representation of the current state of the simulated
machine in CoreASM. In order to distinguish between the values in the simulated
state and the values in our ASM model of the engine, we denote the values of the
simulated state as elements modeled by the domain Element. There is a special
element in the state that represents the undefined value or undef. Henceforth, this
element is denoted by undefe .

Elements can belong to different backgrounds, such as Set, Number, Map, and
so on. The background of every element is defined by the following function whose
default value is “Element” for all elements that do not belong to a particular back-
ground:

bkg : Element 7→ Name

The kernel also defines a notion of equality on elements which can be extended by
plugins providing special backgrounds. For any two elements e1 and e2, the notion
of equality is defined as:1

equal(e1, e2) ≡ equalbkg(e1)(e1, e2) ∨ equalbkg(e2)(e2, e1)

1Here, the notation fx(a1, . . . , an) can be seen as a syntactic sugar for f(x, a1, . . . , an) and if x is
missing, it can be interpreted as f(undef, a1, . . . , an).

44

4. CoreASM: The Kernel CoreASM Documentation

providing that2

∀e1, e2 ∈ Element equalElement(e1, e2) ≡ e1 = e2

We model the simulated abstract state as an element of the domain State where
every s ∈ State in principle models a mapping from locations to values (elements).
We have:

content : State × Location 7→ Element

During a simulation, the current simulated state is represented by the nullary
function state: State. Locations are values of the domain Location and each repre-
sents a pair of function name and a sequence of arguments:

namelc : Location 7→ Name

argslc : Location 7→ List(Element)

We often denote locations by a pair (f, 〈a1, . . . , an〉) where f is the name of the
location and 〈a1, . . . , an〉 are the arguments.

In addition to its content, a CoreASM state also consists of backgrounds, uni-
verses, functions and rules. Before we look into functions and universes, we introduce
Boolean elements, the most basic type of elements in the state.

Boolean Elements

We model Boolean elements by values of the domain BooleanElement which has
only two elements truee and falsee, respectively representing Boolean values true and
false. The following functions map Boolean elements to Boolean values and vice
versa.

booleanElement : Boolean 7→ BooleanElement

booleanValue : BooleanElement 7→ Boolean

For example, we have:

booleanElement(true) = truee
booleanValue(truee) = true

Equality of Boolean elements are simply defined based on the equality of the
Boolean values they represent:

equalBoolean(b1, b2) ≡ booleanValue(b1) = booleanValue(b2)

For all b ∈ BooleanElement we have bkg(b) = “Boolean”.
2In this equation, Element refers to the background name ”Element”.

45

4. CoreASM: The Kernel CoreASM Documentation

Function Elements

Functions defined in a CoreASM state are modeled by function elements, values of
the domain FunctionElement. Every CoreASM state holds a mapping of function
names to function elements:

stateFunction : State × Name 7→ FunctionElement

functions : State 7→ Set(FunctionElement)

functions(s) ≡ {f | f ∈ FunctionElement ∧ (∃n ∈ Name, stateFunction(s, n) = f)}

Function elements in principle represent a mapping from a sequence of elements (argu-
ments of the function) to an element (the value of the function for those arguments):

valuefe : FunctionElement × List(Element) 7→ Element

ASM functions are classified into six categories of monitored (or in), controlled, shared,
out, static, and derived. Monitored functions, or input functions, are those whose
values are only read but never updated by the machine and can only be updated by
the environment. Controlled functions, are the opposite; their values can be updated
only by the machine and not the environment. Shared functions can be updated and
read by both the machine and the environment. The values of out functions can only
be updated but never read by the machine; they are intended for output and their
values can be read by the environment of the machine. Static functions are constants
and their values never change in course of an ASM run. Derived functions can be read
by both the machine and the environment, but cannot be updated; their values are
defined by a fixed scheme in terms of other functions. In CoreASM, classes of function
elements are defined by the following function whose default value is controlled:3

classfe : FunctionElement 7→ {monitored, controlled, out, static, derived}

Hence, modifiability of a function element f is defined as follows:

isModifiable(f) ≡ classfe(f) ∈ {controlled, out}

If a function element is modifiable, its value for a particular sequence of arguments
can be assigned by the following rule:

Abstract Storage

SetValuefe(f, args, v) ≡
if isModifiable(f) then

valuefe(f, args) := v

Every function element f is also a member of Element and bkg(f) = “Function”.
Finally, two function elements are considered to be equal, if for all the possible argu-

3CoreASM does not support shared functions at this point.

46

4. CoreASM: The Kernel CoreASM Documentation

ments, they hold the same values.4 For all f1, f2 ∈ FunctionElement, we have:5

equalFunction(f1, f2) ≡ ∀a ∈ List(Element) valuefe(f1, a) = valuefe(f2, a)

To retrieve the value of a function, the following derived function is defined as
part of the interface of Abstract Storage:

getValue : Location 7→ Element

getValue(l) =
{

valuefe(F , argslc(l)), if valuefe(F , argslc(l)) 6= undef;
undefe, otherwise.

where F = stateFunction(state,namelc(l)). The getValue function is later refined in
Appendix A.1. In addition, Abstract Storage also provides the following macro rule
to set the value of a location in the state:

Abstract Storage

SetValue(l, v) ≡
let F = stateFunction(state,namelc(l)) in

if F 6= undef then
SetValuefe(F , argslc(l), v)

Universe Element

Universe elements, values of domain UniverseElement, represents the universes de-
fined in a CoreASM state. Every CoreASM state holds a mapping of universe names
to universe elements defined in that state:

stateUniverse : State × Name 7→ UniverseElement

universes : State 7→ Set(UniverseElement)

universes(s) ≡ {u | u ∈ UniverseElement ∧ (∃n ∈ Name, stateUniverse(s, n) = u)}

Since universes are sets of elements (or values in ASM), we model them by their set
characteristic functions. Hence, every universe element is also a function element.
We have:

∀u ∈ UniverseElement, u ∈ FunctionElement

To conveniently view universe elements as sets, we define a membership function on
universes:

memberue : UniverseElement × Element 7→ Boolean

4Since this definition is not necessarily computable, in practice we assume any two distinct func-
tions to be unequal, unless defined otherwise (e.g., see Section 5.3.7). Hence, we have:

∀f1, f2 ∈ FunctionElement equalFunction(f1, f2) ≡ f1 = f2

5In ASMs, all functions are total. Partial functions are turned into total functions by introducing
a xed special value undef and interpreting f(x) = undef as f(x) being undened. [20]

47

4. CoreASM: The Kernel CoreASM Documentation

Rules

Backgrounds

Functions

Universes
Data Elements

CoreASM
Elements

Figure 4.1: CoreASM Elements in the Kernel

For example, if element e belongs to the universe u in the current state of the
simulated machine, we have memberue(u, e) = true. As a result, for every u ∈
UniverseElement and every e ∈ Element, we have

valuefe(u, e) ≡ booleanElement(memberue(u, e))
SetValuefe(u, 〈e〉, b) ≡ memberue(u, e) := booleanValue(b)

Equality of universes is defined as the equality of their characteristic functions:

∀u1, u2 ∈ UniverseElement equalUniverse(u1, u2) ≡ equalFunction(u1, u2)

For all u ∈ UniverseElement we have bkg(u) = “Universe”.

Background Elements

In CoreASM, backgrounds are special universes with a static membership function.
The assumption is that backgrounds contain all the elements they represent; e.g.,
background of sets represent all the possible sets. In principle, backgrounds represent
“types” of elements mostly with internal structures. See, for example, how we define
the backgrounds of character strings and sets in sections 5.2.3 and 5.3.2.

We model backgrounds by elements of the domain BackgroundElement. For
every background element b, newValue(b) must be defined to return a default element
of that background; e.g., an empty set, an empty list, and such. We have:

newValue : BackgroundElement 7→ Element

∀ b ∈ BackgroundElement classfe(b) = static
equalBackground(b1, b2) ≡ equalUniverse(b1, b2)

∀b ∈ BackgroundElement bkg(b) = “Background”

48

4. CoreASM: The Kernel CoreASM Documentation

Rule Elements

ASM rules defined in a CoreASM specification (more precisely, defined in the current
state of the simulated machine) are modeled by elements of the domain RuleElement.
States of CoreASM hold a mapping of rule names to rule elements defined in those
states:

stateRule : State × Name 7→ Rule

rules : State 7→ Set(Rule)

rules(s) ≡ {r | r ∈ Rule ∧ (∃n ∈ Name, stateRule(s, n) = r)}

Every rule element has a name6, a body (which is a node of the parse tree) and
a sequence of parameter names, all defined by the following functions:

namere : Rule 7→ Name

body : Rule 7→ Node

param : Rule 7→ List(Name)

The equality of two rules is defined as the equality of their names, program bodies,
and list of parameters.

equalRule(r1, r2) ≡
namere(r1) = namere(r2) ∧ body(r1) = body(r2) ∧ param(r1) = param(r2)

For all r ∈ Rule, we have bkg(r) = “Rule”.

Enumerable Elements

In CoreASM, an element is called enumerable if it can be viewed as a collection (i.e.,
multiset) of other elements. The idea of enumerable elements provides a unique and
yet simple interface to sets, multisets, lists, and other data structures. We define the
following functions as the interface of enumerable elements:

• enumerable : Element 7→ Boolean

holds true if the element is enumerable. By default, enumerable(e) = false for
every element e unless otherwise specified.

• enumerate : Element 7→ Multiset(Element)

provides a collection of elements representing the internal structure of the enu-
merable element.

enumerate(e) ≡ enumeratebkg(e)(e)

• size : Element 7→ Number

returns the size of this enumerable. For every enumerable element e, we have
size(e) = |enumerate(e)|.

6The names of rule elements, universe elements, and function elements should all be unique in
any given CoreASM state.

49

4. CoreASM: The Kernel CoreASM Documentation

• contains : Element × Element 7→ Boolean

contains(e1, e2) ≡
{

true, if enumerable(e1) ∧ e2 ∈ enumerate(e1)
false, otherwise.

Among the elements we have defined so far, universe elements are enumerable (and
so are the background elements). We have:

∀u ∈ UniverseElement enumerable(u) ∧ enumerate(u) = {x|memberue(u, x)}

4.2 The Interpreter

The Interpreter evaluates an annotated parse tree and depending on the type of the
root node, assigns a value, a location, or a multiset of update instructions to the root
of the tree. The Interpreter interacts with the Abstract Storage in order to obtain
values from the current state.

In this section we recall the ExecuteTree rule we presented in Section 3.2 and
provide further details on the process of evaluating parse tree nodes. More specifically,
this section refines the macro rule KernelInterpreter used by ExecuteTree.

4.2.1 Notation

We specify the Interpreter as a collection of rules (some embedded in the kernel,
others contributed by plugins) which traverse a parse tree while evaluating values,
locations and updates.7 In order to introduce these rules, we state the following
assumptions:

1. Nodes of the parse tree belong to the Node universe and the following functions
are defined on nodes:

• first : Node 7→ Node, next : Node 7→ Node, parent : Node 7→ Node are
static functions that implement tree navigation; by using these functions,
the Interpreter can access all the children nodes of a given node, or access
its parent (see Figure 3.3 for reference).

• class : Node 7→ Class returns the syntactical class of a node (i.e., the name
of the corresponding grammar non-terminal class); for example RuleDec-
laration .

• grammarRule : Node 7→ GrammarRule returns the grammar rule that
produced that node.

• token : Node 7→ Token returns the syntactical token represented by the
node (i.e., either a keyword, an identifier, or a literal value).

7This section is a revised and extended version of what we have previously published in [28,
Section 3].

50

4. CoreASM: The Kernel CoreASM Documentation

• pattern : Node 7→ Pattern returns the symbolic name for the specific
grammar pattern corresponding to the node; for example, IfThen symbol-
ically represents the pattern if . . . then.

• [[·]] : Node 7→ Location × Multiset(Update) × Element holds the
result of the interpretation of a node, given by a triple formed by a location
(that is, the l-value of an expression, when it is defined), a multiset of
update instructions, and a value (that is, the r-value of an expression)8.
We access elements and establish properties of such triples through the
following derived functions:

– loc : Node 7→ Location returns the location (l-value) associated to
the given node, i.e. loc(n) ≡ [[n]] ↓ 1.

– updates : Node 7→ Multiset(Update) returns the updates associated
to the given node, i.e. updates(n) ≡ [[n]] ↓ 2.

– value : Node 7→ Element returns the value (r-value) associated to the
given node, i.e. value(n) ≡ [[n]] ↓ 3.

– evaluated : Node 7→ Boolean indicates if a node has been evaluated.
We have,

evaluated(n) ≡ [[n]] 6= undef

• plugin : Node 7→ Plugin is the plugin associated to a node, that is, the
plugin responsible for parsing and evaluation of the node.

2. A special variable pos holds at all times the current position in the tree (i.e.,
the current node being evaluated).

3. We use a form of pattern matching which allows us to concisely denote complex
conditions on the nodes. In particular:

• we denote with
e
? a generic node;

• we denote with
e

a generic unevaluated node; as an aid to the reader,
we will also use the semantically equivalent

e
e ,

e
r , and

e
l to denote

unevaluated nodes whose evaluation is expected to result respectively, in
a value (from an expression), a multiset of updates (from a rule), and a
location;

• we denote with x an identifier node;

• we denote with v (value) an evaluated expression node (that is, a node
whose value is not undef); we denote with u (update multiset) an evaluated
statement node (a node whose updates is not undef); we denote with l
(location) an evaluated expression for which a location has been computed
(a node whose loc is not undef). We will at times add subscripts to these

8The structure of the triple is intended to be mnemonic, with the l-value in the leftmost and the
r-value in the rightmost position in the triple.

51

4. CoreASM: The Kernel CoreASM Documentation

variables, or use different names for special cases that will be discussed as
appropriate;

• we use prefixed Greek letters to denote positions in the parse tree (typically
children of the current node, as denoted by pos) as in if αe then βr where
α and β denote, respectively, the condition node and the then-part node
of an if statement;

• rules of the form
L pattern M → actions

are to be intended as

if conditions then actions

where the conditions are derived from the pattern according to the conven-
tions above, as more formally specified in Table 4.1; in the action part of
such a rule, an unquoted and unbound occurrence of l is to be interpreted
as the loc of the corresponding node; an unquoted and unbound occurrence
of v is to be interpreted as the value of the corresponding node; an un-
quoted and unbound occurrence of u as the updates of the corresponding
node; and an unquoted and unbound occurrence of x as the token of the
corresponding node.

Table 4.2 exemplifies how our compact notation can be translated into actual
ASM rules.

4. The value of local variables (e.g., those defined in import and let rules) is
maintained by a global dynamic function of the form env : Token 7→ Element.
We have

env(x) ≡ top(envStack(x))

where envStack is a function of the form envStack : Token 7→ Stack(Element)

which can be maintained by the following rules:

Interpreter

AddEnv(x, v) ≡ Push(envStack(x), v)
RemoveEnv(x) ≡ Pop(envStack(x))

Notice that, according to the rule ExecuteTree previously described in Section 3.2,
interpreter rules in the kernel or from plugins are only executed when evaluated(pos)
does not hold, i.e. when the current node has not been fully evaluated yet. Control
moves from node to node either by explicitly assigning values to pos, or by setting
[[pos]] to a value that is not undef; in which case, control is returned to the parent of pos
by the ExecuteTree rule (unless an explicit assignment to pos is also made in the same
step). Hence, the general strategy in our rules will be to evaluate all needed subtrees

52

4. CoreASM: The Kernel CoreASM Documentation

Abbreviation Condition part Action part
α, β etc. first(pos), next(first(pos)), etc.

α
e
? class(α) 6= Id

α
e

class(α) 6= Id ∧ ¬evaluated(α)
α
e
e , α

e
r , α

e
l ? class(α) 6= Id ∧ ¬evaluated(α)

αx class(α) = Id token(α)
αv value(α) 6= undef value(α)
αu updates(α) 6= undef updates(α)
αl loc(α) 6= undef loc(α)

? These symbols are semantically equivalent to the
e

symbol; as a visual cue to the reader, the

embedded letters express the intended result of evaluation.

Table 4.1: Abbreviations in Syntactic Pattern-matching Rules

Compact notation Actual rule

L if α
e
e then β

e
r M→ pos := α

let α = first(pos), β = next(first(pos)) in
if class(pos) 6= Id
∧ pattern(pos) = IfThen
∧ class(α) 6= Id
∧ ¬evaluated(α)
∧ class(β) 6= Id
∧ ¬evaluated(β)

then
pos := first(pos)

L if αv then β
e
r M→ if v = truee then . . .

let α = first(pos), β = next(first(pos)) in
if class(pos) 6= Id
∧ pattern(pos) = IfThen
∧ value(α) 6= undef
∧ class(β) 6= Id
∧ ¬evaluated(β)

then
if value(α) = truee then . . .

L if αv then βu M→ . . .

let α = first(pos), β = next(first(pos)) in
if class(pos) 6= Id
∧ pattern(pos) = IfThen
∧ value(α) 6= undef
∧ updates(β) 6= undef

then . . .

Table 4.2: Examples of Pattern Matching Notation Translated into ASM Rules

53

4. CoreASM: The Kernel CoreASM Documentation

of a node, if any, by orderly assigning pos accordingly; when all needed subtrees are
evaluated, we compute the resulting location, updates or value and assign it to [[pos]],
thus implicitly returning control back to our parent. As exemplified in Table 4.2,
our notation allows us to clearly visualize this process by the progressive substitution
of evaluated u nodes for unevaluated

e
r nodes, and of v or l nodes for unevaluatede

e nodes. Notice that identifiers do not have to be evaluated, hence we do not need
a “boxed” version of x.

4.2.2 Kernel Expression Interpreter

As previously described, the kernel interpreter rules implement the Boolean domain
(but not the Boolean algebra), function evaluation and rule call (which share the same
syntactic pattern), assignment, and import statement. We present in this section rules
that result in values, namely for evaluating literals (true, false, undef) and nullary or
n-ary functions.

Literals are simply lifted to their semantic counterparts:

Interpreter: Kernel Expressions

L true M → [[pos]] := (undef, undef, truee)
L false M → [[pos]] := (undef, undef, falsee)
L undef M → [[pos]] := (undef, undef, undefe)
L self M → [[pos]] := (undef, executingAgent, undefe)

Evaluation of identifiers as expressions depends on whether the identifier refers
to a local variable or a function. To evaluate an identifier as an expression, the
Interpreter first checks the set of in-scope local variables for a possible value for the
identifier. If the identifier was not a local variable (i.e., it is not found in the local
environment), the Interpreter checks if the identifier refers to a (nullary) function, in
which case the Abstract Storage is queried for the value of that function in the current
state. If instead the identifier is not defined, the macro HandleUndefinedIdentifier
(described later) is called. The rule for n-ary functions is similar, except that the
arguments of the function are evaluated first. The formal definition is as follows:

Interpreter: Kernel Expressions

L αx M → if env(x) 6= undef then
[[pos]] := (undef, undef, env(x))

else
if isFunctionName(x) then

let l = (x, 〈〉) in
[[pos]] := (l, undef, getValue(l))

if undefinedToken(x) then
HandleUndefinedIdentifier(pos, x, 〈〉)

54

4. CoreASM: The Kernel CoreASM Documentation

L αx(λ1
e
? 1, . . . ,

λn
e
? n) M → if isFunctionName(x) then

choose i ∈ [1..n] with ¬evaluated(λi)
pos := λi

ifnone
let l = (x, 〈value(λ1), . . . , value(λn)〉) in

[[pos]] := (l, undef, getValue(l))
if undefinedToken(x) then

HandleUndefinedIdentifier(pos, x, 〈λ1, . . . , λn〉)
where

undefinedToken(x) ≡ ¬(isFunction(x) ∨ isRule(x) ∨ isUniverse(x))

Notice how in the second pattern, the
e
? symbol is used to denote arguments,

both unevaluated and evaluated. If x is bound to a function, the rule specifies that
all arguments must be evaluated, without any specific order, to determine the location
of the node. While there are still unevaluated arguments, the rule sets pos to the node
representing an unevaluated argument; as soon as the evaluation of the argument is
complete, control returns to the parent node (and thus, again to the same rule), until
all arguments are evaluated. At this point (ifnone branch), the location and values
of the function are computed and stored in [[pos]].

Finally, if the Interpreter encounters an identifier that is not bound to any element
of the state, the HandleUndefinedIdentifier rule (see Appendix A.2) will consult all the
plugins that are registered to handle undefined identifiers. More specifically, such
plugins are asked to evaluate the node with the undefined identifier.9 If none of the
plugins could evaluate the node, KernelHandleUndefIdentifier will be called to create
a new function element with a default value of undefe for the given arguments. This
default behavior of the kernel is a “liberal” approach toward type-checking; it allows
identifiers to be used without declaration, which is suited for early analysis and
specification.

Interpreter: Undefined Identifier

KernelHandleUndefIdentifier(pos, x, args) ≡
let f = new(FunctionElement) do

stateFunction(state, x) := f
[[pos]] := ((x, args), undef, undefe)

4.2.3 Kernel Rule Interpreter

Rule plugins provide the execution semantics of rules. Execution of rules results in a
multiset of update instructions that is the underlying value for the rule node of the
parse tree. As discussed in Section 3.2, accumulated update instructions are used by
the Abstract Storage to compute the updates set that will ultimately be applied to
the current state to generate the next state.

9It is considered an error if more than one plugin evaluate the undefined identifier with different
results.

55

4. CoreASM: The Kernel CoreASM Documentation

We start with the skip rule or the no-operation rule. The semantics of the skip
rule is simply to produce an empty multiset of updates:

Interpreter: Kernel Rules

L skip M → [[pos]] := (undef, {||}, undef)

Rule Calls

To evaluate an identifier as a rule, the Interpreter first checks if a rule element is
bound to the identifier. If so, the RuleCall macro is called to execute the rule. Notice
that in this case, arguments are not evaluated prior to calling the rule: in fact, the
semantics of rule calls in [20] prescribes that the formal parameter in the body of the
rule must be substituted with the entire term that is used as the actual argument,
not its value.

Interpreter: Kernel Rules

L αx M → if isRuleName(x) then
RuleCall(ruleValue(x), 〈〉)

L αx(λ1
e
? 1, . . . ,

λn
e
? n) M → if isRuleName(x) then

RuleCall(ruleValue(x), 〈λ1, . . . , λn〉)

Traditionally, rule calls in ASMs have been used in two form: as macros, or as
sub-machines. The difference between the two forms is that calling a macro simply
means executing its body (possibly with parameter substitution) and collecting the
resulting updates, whereas running a submachine results in an entire encapsulated
computation of the rule, that is iterated until completion, as defined in [20, Section
4.1.2]. Here, we model macro calls, while the effect of submachine calls can simply
be achieved by using the iterate construct; see Section 5.1.8 for the specification of
the iterate construct.

As we have already noted, ASMs differ from many other languages in that call-by-
substitution is used for parameters instead of the more usual call-by-value. In other
words, actual parameters are evaluated at the point of use (in the callee) rather than
at the point of call (in the caller). Due to the presence of seq-rules, the difference
can be observable, as parameters can be evaluated in different states. Hence, we have
to substitute the whole parse tree denoting an actual parameter (i.e., an expression)
for each occurrence of the corresponding formal parameter in the body of the callee.
Also, we substitute parameters in a copy of the callee body, to avoid modifying the
original definition.

There are several static semantic constraints on valid rule declarations; for exam-
ple, it is assumed that the formal parameters of a rule are all pairwise distinct, and
that the formal parameters are the only freely occurring variables in the body of the
rule (see [20], Definition 2.4.18). For simplicity, we do not explicitly check for such
conditions in our specification.

56

4. CoreASM: The Kernel CoreASM Documentation

The RuleCall routine, defined below, describes how rule calls (possibly with pa-
rameters) are handled.

Interpreter: Kernel Rules

RuleCall(r, args) ≡
if workCopy(pos) = undef then

let b′ = CopyTreeSub(body(r), param(r), args) in
workCopy(pos) := b′

parent(b′) := pos
pos := b′

else
[[pos]] := (undef, updates(workCopy(pos)), value(workCopy(pos)))
workCopy(pos) := undef

The rule CopyTreeSub returns a copy of the given parse tree, where every instance
of an identifier node in a given sequence (formal parameters) is substituted by a
copy of the corresponding parse tree in another sequence (actual parameters). We
assume that the elements in the formal parameters list are all distinct (i.e., it is
not possible to specify the same name for two different parameters). Also, formal
parameters substitution is applied only to occurrences of formal parameters in the
original tree passed as argument, and not also on the actual parameters themselves.
See Appendix A.2 for the definition of CopyTreeSub.

Assignment and Import

The kernel of the CoreASM engine also includes assignment and import rules. As-
signment is performed as follows:

Interpreter: Kernel Rules

L α
e
? := β

e
? M → choose τ ∈ {α, β} with ¬evaluated(τ)

pos := τ
ifnone

if loc(α) 6= undef then
if isModifiable(stateFunction(state,namelc(loc))) then

[[pos]] := (undef, {|〈loc(α), value(β)〉|}, undef)
else

Error(‘Cannot update a non-modifiable function’)
else

Error(‘Cannot update a non-location.’)

It is worthwhile to remark that the rule above does not syntactically constrain
assignment to be performed exclusively to variables or functions: rather, any plugin
can contribute new forms of expressions which, as long as they result in a modifiable
location (e.g., not a monitored function), are deemed syntactically acceptable in the
lhs of an assignment.

The import rule is defined as follows:

57

4. CoreASM: The Kernel CoreASM Documentation

Interpreter: Kernel Rules

L import αx do β
e
r M → let e = new(Element) in

AddEnv(x, e)
pos := β

L import αx do βu M → RemoveEnv(x)
[[pos]] := (undef, u, undef)

To perform an import, a new element is created and it is assigned to the value of
the given identifier (x) in the local environment. The rule part

e
r is then evaluated

in this new environment by assigning pos to the corresponding node. The identifier
is then removed from the local environment when the evaluation of the rule part is
complete.

4.2.4 Operators

Although plugins can extend the CoreASM language by introducing (almost) arbitrary
expression forms, operators are treated specially in the CoreASM engine. To avoid
lengthy expressions with unnecessary parenthesis, the engine provides plugins with a
mechanism to declare a precedence level for the operators they contribute.

Precedence level of an operator is defined by a numeric value p ∈ [0 . . . 1000],
where 1000 is the highest priority. This value should be attached to all operator
patterns. The following example introduces a new operator Ω with precedence level
300:

L
e
e Ω

e
e M

[300]
→ . . .

The only operator provided by the kernel is the equality operator (“=”). Two
values are considered to be equal if they are equal according to at least one of their
corresponding backgrounds. In the following rule, the equality functions provided by
the backgrounds of the operands are queried to determine the equality:

Interpreter: Kernel Operators

L α
e
? = β

e
? M

[600]
→ choose λ ∈ {α, β} with ¬evaluated(λ)

pos := λ
ifnone

let e1 = value(α), e2 = value(β) in
let b1 = bkg(e1), b2 = bkg(e2) in

if equalb1(e1, e2) ∨ equalb2(e2, e1) then
[[pos]] := (undef, undef, truee)

else
[[pos]] := (undef, undef, falsee)

58

4. CoreASM: The Kernel CoreASM Documentation

4.3 Rules and Updates

According to the original definition of ASMs, evaluation of each ASM rule results in
a potentially empty set of updates of the form (l, v) where l is a location and v is
a value to be assigned to that location if the update is successfully applied to the
state. At the end of each computation step, the update set produced by evaluating
the program of the machine (or programs of the agents in a multi-agent ASM), if
consistent, will be applied to the state to form the new state.10

In CoreASM, we originally followed exactly the same idea: rules would produce
update sets of the form 〈l, v〉. However, this approach would seriously limit and com-
plicate incremental or partial modification of elements with internal structure that
are composed of other elements, such as sets, maps, and trees. For example, parallel
addition of elements 5 and 7 to the set {1, 2} residing at the location f(a) would lead
to two inconsistent updates of 〈(“f”, 〈a〉), {1, 2, 5}〉 and 〈(“f”, 〈a〉), {1, 2, 7}〉.

Inspired by the idea of partial updates introduced in [51, 52], we extend CoreASM
updates from a pair of location-value to a triplet of the form

〈Location,Element,Action〉,

called update instruction, that is general enough to represent regular and partial up-
dates.11 Update instructions consist of a location, a value, and an action that defines
the type of modification that has to be done on the location. The most basic action,
which is defined in the CoreASM kernel, is the updateAction ∈ Action. An update
instruction of the form 〈l, v, updateAction〉 is semantically equivalent to an original
ASM update of (l, v). However, background plugins may introduce their own special
actions; for example, a plugin providing the background of sets may introduce two
new actions setAddAction and setRemoveAction respectively representing the actions
of adding and removing elements from a set. As a result, in our example of adding 5
and 7 to the set {1, 2} above, the parallel execution of the rules will lead to the follow-
ing update instructions: 〈(“f”, 〈a〉), 5, setAddAction〉 and 〈(“f”, 〈a〉), 7, setAddAction〉
which will have to be later aggregated by the plugin into one single regular update on
the given location.

4.3.1 Update Instruction Notation

We define the following functions on update instructions:

• uiLoc : Update 7→ Location

returns the location associated with the given update instruction.
10The ideas presented in this section has been previously discussed in more detail in M. Memon’s

M.Sc. thesis [64].
11In practice, we define update instructions as quadruples of the form 〈Location, Element,

Action, Set(Element)〉 where the 4th element is the set of agents that produced the update
instruction (an update may be the result of aggregating two or more updates); however, in this work
we often leave out the reference to the 4th element and view update instructions as triples.

59

4. CoreASM: The Kernel CoreASM Documentation

• uiVal : Update 7→ Element

returns the value associated with the given update instruction.

• uiAction : Update 7→ Action

returns the action associated with the given update instruction.

• uiAgents : Update 7→ Set(Element)

returns the set of agents that produced the given update instruction.

• aggStatus : Update×Plugin 7→ {successful, failed}
indicates the aggregation status of an update instruction, set by a given aggre-
gator plugin. If an update instruction ui has not been processed by a plugin,
aggStatus(ui) is undef.

4.3.2 Aggregation of Updates

According to the original ASM definition, after every computation step, location
contents are changed by and only by updates. In order to be faithful to that definition,
with the introduction of partial updates, we introduce an aggregation phase in every
computation step that takes place before the application of updates to the state.
Aggregation is the process of combining all update instructions affecting a single
location, into one single update which is called the resultant update. The aggregation
phase of a CoreASM step performs aggregation on all locations affected by the step
and results in a set of regular updates.12

Since the CoreASM kernel does not introduce any special update actions other
than the one for regular updates, it only defines the framework in which background
plugins can provide their background-specific partial updates and their corresponding
aggregation algorithms. We say that a plugin is responsible for an action, if it is
registered to aggregate update instructions of that action. A plugin is said to be
responsible for aggregation of a given update instruction if the update instruction
contains an action for which the plugin is responsible. Finally a plugin is considered
to be responsible for aggregation of a given regular update if there is an update
instruction that operates on the the same location. A plugin that is registered for
aggregation of one or more update action is called an aggregator plugin.

Recalling the definition of AggregateUpdates on page 39, Abstract Storage calls
the following rule in its Aggregation control state before firing the updates to the
state (see also Figure 3.8):

Abstract Storage

AggregateUpdates ≡
updateSet ← Aggregate(updateInstructions)

The Aggregate method runs the aggregation method of all the aggregator plugins
on the update instructions, gathers the resulting updates and returns the compiled

12This is also in line with the integration phase introduced in [51].

60

4. CoreASM: The Kernel CoreASM Documentation

set. When called for aggregation, an aggregator plugin aggregates all update instruc-
tions for which it is responsible and flags them as either successful or failed. It is
important to note that the order in which plugins are called to perform aggrega-
tion should not affect the resultant updates produced. Also note that the failure
in aggregation of a single plugin should not fail the aggregation attempt of other
plugins.

Abstract Storage

Aggregate(updates) ≡
let ap = {a | a ∈ Plugin ∧ aggregator(a)} in

seq
forall p ∈ ap do

let R = aggregatorRule(p) in
resultantUpdates(p, updates) ← R(updates)

next
result :=

⋃
p∈ap resultantUpdates(p, updates)

The resultantUpdates function is used to collect resultant updates from plugins for
a given multiset, and the aggregatorRule(p) function returns the aggregation rule
provided by plugin p. Note that a plugin aggregator rule is expected to accept a
multiset of update instructions as an argument, and its invocation should cause the
return of its resultant updates with the return-result rule syntax as described in [20,
Def. 4.1.7].

Plugin Aggregation Consistency

Aggregation algorithms provided by plugins also implicitly define the acceptable se-
mantics of the combination of updates they process. During an aggregation process,
a plugin may encounter a situation where the updates and instructions for a given
location cannot be aggregated into a regular update. Such a situation may occur, for
example, if there are updates or instructions that are semantically inconsistent, such
as addition and removal of the same element from a set.

When the aggregation of all updates and instructions affecting a given location
are deemed inconsistent, the plugin flags all updates to the location as failed.

Abstract Storage

HandleInconsistentAggregation(loc, updateMset, plugin) ≡
forall ui ∈ updateMset with uiLoc(ui) = loc do

aggStatus(ui, plugin) := failed

Although aggregation for a single location may have failed, the aggregation of the
rest of the update instructions a plugin is responsible for would continue.

61

4. CoreASM: The Kernel CoreASM Documentation

Basic Update Aggregator

Once aggregation of all aggregator plugins have completed successfully, the resultant
update set may still have updates with a regular update action that do not need ag-
gregation but are not flagged as processed. The Basic Update Aggregator provided by
the Kernel plugin (see Section 3.2.1) solves this problem by returning a set of all regu-
lar updates for locations which do not require any aggregation and flagging all those
updates as successful. The basic update aggregator is called by AggregateUpdates
along side all aggregator plugins.

Abstract Storage

BasicUpdateAggregator(updateMset) ≡
seq
result := {}

next
forall ui ∈ updateMset with uiAction(ui) = updateAction do

if 6 ∃ ui2 ∈ updateMset, uiLoc(ui) = uiLoc(ui2) ∧ uiAction(u2) 6= updateAction then
add ui to result
aggStatus(ui, kernelPlugin) := successful

4.3.3 Composition of Updates

Aggregation as we have described it so far gives semantically acceptable results with
basic ASMs. However, for Turbo ASMs, which allow for sequential composition
and iteration of ASMs within one single step of the machine, aggregation alone is
insufficient. While the sequential composition of ASMs imposes an order between
the sets of updates (on a location), it is not always desirable for a Turbo ASM rule
to return aggregated resultant updates. On the other hand, update instructions
produced by a Turbo ASM rule has to be composed in a form that preserves the
sequential semantics of the updates. As an example, consider the following sequential
composition, where s = {1, 2}:

seq
add 5 to s
add 7 to s

next
remove 5 from s
add 6 to s

The semantics of this rule is to add 6 and 7 to s. Since this rule may be executed
in parallel with other rules that may also modify the set s, it is desirable that the
evaluation of this rule does not result in aggregated updates (i.e., a regular update
assigning {1, 2, 6, 7} to s). On the other hand, there is an explicit order between
the update instructions produced by the two parts of this sequence which has to be
reflected in the resulting update multiset. As a result, a special composition process
has to be introduced on update instructions that composes two multisets of update

62

4. CoreASM: The Kernel CoreASM Documentation

instructions into one multiset with respect to the order of updates. In the above
example, removing 5 from s neutralizes the addition of 5 in the first step and so
neither of the two modifications will appear in the result of the composition, which
will be {|〈(“s”, 〈〉), 6, setAddAction〉, 〈(“s”, 〈〉), 7, setAddAction〉|}.

Since the CoreASM kernel does not define any special update action, its composi-
tion (captured by the Compose rule defined below) basically relies on the composition
behaviors provided by background plugins. As a result, every aggregator plugin is
required to also provide a composition algorithm which, when given two update mul-
tisets, produces composed update instructions for all locations for which the plugin
is responsible.

It is important to note that the Compose rule expects the first update multiset to
be consistent with respect to typical ASM consistency and aggregation consistency.
The result of sequential composition of the two update multisets would then be the
union of all composed update instructions produced by individual plugins.

Abstract Storage

Compose(uMset1, uMset2) ≡
seq
let ap = {a | a ∈ Plugin ∧ aggregator(a)} in

forall p ∈ ap do
let R = composerRule(p) in

composedUpdates(p, uMset1, uMset2) ← R(uMset1, uMset2)
next
result :=

⋃
p∈ap composedUpdates(p, uMset1, uMset2)

In the above rule, the composedUpdates function is used to collect the updates
resulting from plugins performing sequential composition of two update multisets.
The composerRule function is expected to return the composition behavior of the
given plugin, implementing the composition of updates on locations for which it is
responsible. Note that the composition rule for each plugin is expected to accept two
multisets as arguments, and its invocation should cause the return of the sequentially
composed update multiset with the return-result rule syntax as described in [20, Def.
4.1.7].

A plugin which provides aggregation, must also provide facilities for sequential
composition of actions for which it is responsible. A plugin is deemed responsible for
the composition of updates at a given location, if and only if:

• The plugin is responsible for aggregation of the location with respect to the
second update multiset.

• The plugin is responsible for aggregation of a location with respect to the first
update multiset, if and only if that location is not affected by the second update
multiset.

63

4. CoreASM: The Kernel CoreASM Documentation

Basic Update Composer

To complement the basic update aggregator we introduced earlier, the Kernel plugin
also provides a default update composition behavior. The Basic Update Composer is
responsible for performing sequential composition of locations affected solely by basic
updates. Sequential composition of updates in basic ASMs (without partial updates)
is formally defined in [20, Def. 4.1.1] as

U ⊕H = {u ∈ U | location(u) 6∈ locations(H)} ∪H

In CoreASM, with the existence of partial updates, sequential composition of basic
updates is similarly defined as:

compose(U,H) ≡ {u ∈ U | location(u) 6∈ locations(H) ∧ isBasicUpdate(u)}
∪ {u ∈ H | isBasicUpdate(u)}

The basic update composer is then defined as follows:

Abstract Storage

BasicUpdateComposer(uMset1, uMset2) ≡
result := {ui1 | ui1 ∈ uMset1 ∧ isBasicUpdate(uMset1, ui1) ∧ ¬locUpdated(uMset2, uiLoc(ui1))}

∪ {ui2 | ui2 ∈ uMset2 ∧ isBasicUpdate(uMset2, ui2)}
where

isBasicUpdate(uMset, ui) ≡ ∀ 〈l, v, a〉 ∈ uMset, l = uiLoc(ui)⇒ a = updateAction
locUpdated(uMset, l) ≡ ∃ ui ∈ uMset, uiLoc(ui) = l

We refer to Mashaal Memon’s M.Sc. thesis [64] for further details on aggregation
and composition of updates.

4.4 The Parser

CoreASM offers the possibility of extending and modifying the syntax and semantics
of its language, keeping only the bare essential parts of the ASM language as static.
In order to achieve this goal, CoreASM plugins should be able to extend the grammar
of the core language by providing new grammar rules together with their semantics.
As a result, the kernel of the engine does not have a comprehensive parser. Plugins
used in a given specification can provide portions of the grammar (sets of grammar
rules) of the language based on which the specification has to be parsed. Upon
loading a specification, the engine will combine all the provided grammar rules into
a single grammar. Based on this grammar, a parser is generated which will be
used to generate the parse tree of the specification. Hence, the CoreASM parser is
in fact a parser generator which, when given a grammar, produces a parser that
can be used to parse a given specification. As a result, the grammar used for two
different specifications may be different, depending on the plugins required by the
specifications. One of the challenges in the implementation of CoreASM had been

64

4. CoreASM: The Kernel CoreASM Documentation

to equip the engine with a fast parser generator capable of generating parsers with
look-ahead of more than one to allow co-existence of more than one grammar rule
starting with the same pattern.

We do not intend to specify the details of the CoreASM parser; we only require
that the parser provides the following function and rule as part of its interface:

• A function of the form requestedPlugins : Specification 7→ Set(Plugin) that
for every specification returns the list of plugins used by that specification. In
practice, this would be achieved by looking for the use clauses in the specifica-
tion.

• An ASM rule of the form Parse(spec,G) that parses the given specification spec
with respect to the given grammar G, produces a parse tree of nodes (values of
the domain Node, see Section 4.2.1) representing the specification, and returns
the root node of the parse tree.

4.5 The Plugin Framework

The CoreASM plugin architecture supports two extension mechanisms: plugins can
either extend the functionality of specific components of the engine, by contributing
additional data or behavior to those components (i.e., adding new grammar rules
to the Parser, new semantic rules to the Interpreter, new backgrounds, universes,
and functions to the Abstract Storage, and new policies to the Scheduler) or they
can extend the control state ASM of the engine, by interposing their own code in
between state transitions.

Practically speaking, a CoreASM plugin can be implemented as a Java class that
implements one or more of the interfaces defined by the CoreASM extensibility frame-
work (see Table 4.3 and also Section 6.2.1). In this section we look at various plugin
interfaces and explore the mechanisms through which they extend the CoreASM en-
gine.

4.5.1 Parser Extensions

Plugins can implement the Parser Plugin interface and/or the Operator Provider in-
terface to extend the Parser by respectively contributing additional grammar rules
and new operator descriptions. We assume that for any parser plugin pp, pluginGrammar(pp)
holds the set of all the grammar rules contributed by pp, and for any operator provider
op, pluginOperators(op) holds the descriptions (syntax and semantics) of new opera-
tors contributed by op.

Before parsing a specification, the engine gathers all the grammar rules and oper-
ator descriptions provided by all parser plugins and operator providers. The Parser
then combines these grammar rules and operator descriptions with the kernel gram-
mar and builds a new ‘parser’ to scan the specification. While building the abstract
syntax tree, this parser labels the nodes that are created by plugin-provided grammar

65

4. CoreASM: The Kernel CoreASM Documentation

Plugin Interface Extends Description
Parser Plugin Parser provides additional grammar

rules to the parser
Interpreter Plugin Interpreter provides new semantics to the In-

terpreter
Operator Provider Parser, Interpreter provides grammar rules for new

operators along with their prece-
dence levels and semantics

Vocabulary Extender Abstract Storage extends the state with additional
functions, universes, and back-
grounds

Aggregator Abstract Storage aggregates partial updates into
basic updates

Scheduler Plugin Scheduler provides new scheduling policies
for multi-agent ASMs

Extension Point Plugin all components extends the control state model
of the engine

Table 4.3: CoreASM Plugin Interfaces

rules with the plugin’s identifier; these labels can later be used by the Interpreter to
evaluate the nodes.

Parser plugins and operator providers are probed by the LoadSpecPlugins rule
before the engine starts parsing the specification (see Figure 3.5). This rule iterates
over all the plugins required by the loaded specification and after ensuring dependency
requirements, loads the plugins by calling the LoadPlugin rule presented below. The
latter initializes the plugin, then loads all the provided grammar rules and operator
descriptions to be processed by the parser in the next step of the process.

Control API

LoadPlugin(p) ≡
if p 6∈ loadedPlugins then

seq
InitializePlugin(p)

next
add p to loadedPlugins
if isParserPlugin(p) then

add pluginGrammar(p) to grammarRules
if isOperatorProvider(p) then

add pluginOperators(p) to operatorRules

InitializePlugin(p) ≡
let R = pluginInitRule(p) in
R

66

4. CoreASM: The Kernel CoreASM Documentation

4.5.2 Interpreter Extensions

Plugins can extend the Interpreter component of the engine by implementing ei-
ther the Interpreter Plugin interface or the Operator Provider interface (or both).
These plugins provide the semantics for rules and operations contributed as per Sec-
tion 4.5.1. Traversing the abstract syntax tree, the ExecuteTree rule of the Interpreter
(see Figure 3.9) uses these semantic rules to evaluate nodes that correspond to the
extended grammar rules.

The semantics contributed by a plugin p which implements the Interpreter Plugin
interface can be obtained through pluginRule(p). As already mentioned earlier, nodes
of the parse tree corresponding to grammar rules provided by a plugin are annotated
with the plugin identifier. If a node is found to refer to a plugin, the Interpreter
obtains the semantic rules provided by that plugin and executes it; otherwise, the
default kernel Interpreter rules are used (see ExecuteTree on page 39).

A similar approach is also used by the KernelInterpreter rule to obtain semantics of
extended operators from operator providers. A detailed discussion on how the engine
deals with operators and their extensions is provided in [64].

4.5.3 Abstract Storage Extensions

Vocabulary Extender plugins extend the vocabulary of the CoreASM state by con-
tributing new backgrounds, universes, and functions to the Abstract Storage. Such
plugins in fact extend the initial state and the signature of the simulated machine.
The following functions, defined on vocabulary extender plugins, respectively hold
the backgrounds, universes, functions, and rule elements such plugins provide:

pluginBackgrounds : Plugin 7→ (Name 7→ BackgroundElement)

pluginUniverses : Plugin 7→ (Name 7→ UniverseElement)

pluginFunctions : Plugin 7→ (Name 7→ FunctionElement)

pluginRules : Plugin 7→ (Name 7→ Rule)

In the Abstract Storage, stateUniverse and stateFunction bind the names of func-
tions and universes in the CoreASM state to the mathematical objects that represent
them (see Section 4.1). Backgrounds are considered as special universes and hence
are handled by stateUniverse. The value of these functions is initialized by the InitAb-
stractStorage rule (see Figure 3.5). While creating the default universe and functions,
the engine calls LoadVocabularyPlugins to iterate over all vocabulary extender plugins
and to extend the CoreASM state with the vocabulary they provide.

67

4. CoreASM: The Kernel CoreASM Documentation

Abstract Storage

LoadVocabularyPlugins(state) ≡
forall p ∈ specPlugins do

if isVocabularyExtender(p) then
forall (bkgName, bkg) ∈ pluginBackgrounds(p) do

stateUniverse(state, bkgName) := bkg
forall (uName, universe) ∈ pluginUniverses(p) do

stateUniverse(state, uName) := universe
forall (fName, f) ∈ pluginFunctions(p) do

stateFunction(state, fName) := f
forall (rName, rBody) ∈ pluginRules(p) do

stateRule(state, rName) := rBody

Plugins can also implement the Aggregator interface and provide aggregation and
composition rules to be applied on update instructions before they are submitted
to the state. Aggregator plugins are called to aggregate update instructions by the
AggregateUpdate rule in the Aggregation state of the engine; see Figure 3.8 and Sec-
tion 4.3.2 for more details. For any aggregator plugin ap, aggregatorRule(ap) and
composerRule(ap) respectively hold the aggregation and composition behaviors pro-
vided by ap.

4.5.4 Scheduler Extensions

Policy plugins, also called Scheduler plugins, extend the scheduler of the engine by
providing new scheduling policies that affect the selection of agents in multi-agent
ASMs. They provide an extension to the scheduler that is used to determine at each
step the next set of agents to execute. We assume that for any scheduling plugin
sp, pluginSchedulingPolicy(sp) holds the scheduling policy provided by sp. For any
scheduling policy, the following functions should be defined:

• newSchedulingGroup : SchedulingPolicy 7→ SchedulingGroup

returns a new scheduling group for the given policy. A scheduling group binds
a group of schedules together. The exact semantics of such a group would
be defined by the scheduling policy. For example, in a one-by-one scheduling
policy that tries to offer a fair schedule, all the schedules created within a group
share the same ‘memory’, i.e. they avoid scheduling already scheduled elements
before scheduling the ‘remaining’ elements.

• newScheduleRule : SchedulingPolicy 7→ Rule

returns an ASM rule modeling a function of the form

f : SchedulingGroup × Set 7→ List(Set)

that given a scheduling group and an initial set of elements (agents), provides
a new schedule based on the given policy. The schedule is in form of a list of

68

4. CoreASM: The Kernel CoreASM Documentation

subsets of the initial set of elements. For example, a schedule on the set {a, b, c}
can be 〈{a, b, c}, {a, b}, {b, c}〉 or 〈{c}〉.

See Section 5.4.2 for an example of a policy plugin.

4.5.5 Extension Point Plugins

In addition to modular extensions of specific components, plugins can also extend
the control state of the engine by registering themselves for Extension Points. Each
control state transition in the execution engine is associated to an extension point.
At each extension point, if there is any plugin registered for that point, the code
contributed by the plugin for that transition is executed before the engine proceeds to
the next control state. Such a mechanism enables arbitrary extensions to the engine’s
lifecycle, which facilitates implementing various practically relevant features such as
adding debugging support, adding a C-like preprocessor, or performing statistical
analysis of the behavior of the simulated machine (e.g., coverage analysis or profiling).
A plugin, for example, could monitor the updates that are generated by a step before
they are actually applied to the current state of the simulated machine, possibly
checking conditions on these updates and thus implementing a kind of watches (i.e.,
displaying updates to certain locations) or watch-points (i.e., suspending execution
of the engine when certain updates are generated), which are useful for debugging
purposes. As an additional example, a plugin could provide syntax for declaring
assertions and invariants. Assertions have to be checked when the corresponding
node is evaluated, hence the plugin would also implement the Interpreter extension
to give semantics to assertions. In contrast, invariants have to be checked at each step
(not when a particular rule is executed), for example immediately before applying
updates: thus, the plugin would hook on the FireUpdateSet extension point to check
that the declared invariants really hold in each state.

As we mentioned earlier, we have used a variant of control state ASMs to present
a high-level specification of the CoreASM engine. Recalling the definition of control
state ASMs from Section 2.3, a control state ASM is an ASM whose rules are all of
the form presented in Figure 2.1.

To model the CoreASM engine, we introduce a variation of control state ASMs,
called an Extensible Control State ASM, which is a control state ASM with an ad-
ditional (and potentially dynamic) set of extension point plugins contributing sup-
plementary rules that are executed before the machine switches to a new state (i.e.
before ctl state gets a new value).

Extensible control state ASMs are pictured with almost the same control state
diagrams as shown in Figure 2.1. The difference is that in EFSM diagrams, the
transition with an extension point is marked with a small diamond;13 see Figure 4.2(a)

13In order not to confuse the reader, we have omitted the diamond from our diagrams. However,
this should not be a concern since the extension points are always on the transitions leading to
control states.

69

4. CoreASM: The Kernel CoreASM Documentation

for an example. Rules of extensible control state ASMs are formulated in textual form
by a set of Extensible Finite State Machine (EFSM) rules, where EFSM is defined as
follows:

EFSM

EFSM(i, if cond then rule, j) ≡
if ctl state = i and cond then

rule seq Proceed(i, j)

Proceed(i, j) ≡
seq

forall p ∈ extensionPointPlugins do
marked(p) := isPluginRegisteredForTransition(p, i, j)

seq
iterate

let eps = {p | p ∈ extensionPointPlugins with marked(p)} in
choose p′ ∈ eps with ∀p′′ ∈ eps holds priority(p′) ≥ priority(p′′) do

marked(p′) := false
let R = pluginExtensionRule(p′) in
R(i, j)

next
ctl state := j

where
priority(p) ≡ pluginCallPriority(p, i, j)

An EFSM rule, instead of updating the control state of the machine in parallel
with the execution of the transition rule, first executes the transition rule, then iter-
ates over all the extension point plugins (according to their priority) and one by one
executes their extension rules before switching the control state of the machine to a
new state.14

As an example, the extensible control state ASM of Figure 4.2(a) can be executed
with a set of extension point plugins {p1, p2} contributing rules PRule1 and PRule2

which extend the control state of the machine (during its execution) to the control
state ASM of Figure 4.2(b).

The following functions are defined on extension point plugins:

• isPluginRegisteredForTransition : Plugin × EngineMode × EngineMode 7→
Boolean

holds true if the given plugin is registered to extend the behavior of the transi-
tion between the two given engine modes.

• pluginExtensionRule : Plugin 7→ Rule

returns the behavior of the plugin on extension points it is registered for.
14If two plugins have the same call priority, their rules will be executed in a non-deterministic

order.

70

4. CoreASM: The Kernel CoreASM Documentation

i rulecond j

(a)

i rulecond j

PRule2PRule1

(b)

Figure 4.2: (a) An extensible control state ASM and (b) one of its possible extensions

• pluginCallPriority : Plugin × EngineMode × EngineMode 7→ Number

is the call priority of the plugin on the extension point between the two engine
modes. Zero (0) is the lowest priority and 100 is the highest call priority.
The engine will consider this priority when calling plugins at extension point
transitions. Default call priority is 50.

The Signature and IO plugins from the standard CoreASM library, among others,
implement the Extension Point interface to extend the control state ASM of the
engine. We will look into these plugins in more detail in sections 5.4.1 and 5.4.3.

4.5.6 Plugin Service Interface

In many cases, there is a legitimate need for the environment of the CoreASM engine
(e.g., the GUI of a simulator or of a debugger) to interact directly with some plugins.
To support this interaction, the CoreASM extensibility framework introduces the
concept of a Plugin Service Interface through which plugins can expose part of their
functionality to the environment of the engine.

pluginServiceInterface : Plugin 7→ PluginServiceInterface

The Plugin Service Interface allows CoreASM plugins to define and provide their
own interfaces to the environment. Applications utilizing the engine can access these
interfaces through Control API and directly interact with such plugins. As an ex-
ample, the IO Plugin provides its own interface to expose the output of its print
rules to the environment of the engine (see Section 5.4.3). A GUI for the engine, for
example, can utilize this interface to obtain the printed output and display it in a
console window.

As each plugin exposes different functionalities, users of the Plugin Service Inter-
face have to know in advance what to expect from a specific plugin. This requirement
is in keeping with the assumption that the environment will access specific services
from a specific plugin, as in the case of print rules.

71

4. CoreASM: The Kernel CoreASM Documentation

4.5.7 Plugin Background

We model CoreASM plugins by elements of a domain Plugin. In addition to the
special-purpose functions mentioned in this chapter, the following functions define a
general interface for all plugins:

• pluginName : Plugin 7→ Name

returns the unique name of a plugin. The engine cannot load two plugins that
share the same name.

• pluginVersion : Plugin 7→ Version

returns the version information of the given plugin.

• pluginDependencySet : Plugin 7→ Set(Name × Version)

is a set of the names and minimum required version of all the plugins that this
plugin depends on.

• pluginLoadPriority : Plugin 7→ Number

returns the suggested loading priority of this plugin. Zero (0) is the lowest
priority and 100 is the highest loading priority. The engine will consider this
priority when loading plugins. All plugins with the same priority level will be
loaded in a non-deterministic order.

• pluginInitRule : Plugin 7→ Rule

provides an ASM rule that initializes the plugin. This rule is called when the
plugin is loaded by the engine; see the LoadPlugin rule on page 66.

For convenience, CoreASM allows plugins to be packaged together in one plugin,
called a package plugin. For example, a set of standard CoreASM plugins (such
as sets, numbers, and lists) can be packed in package plugin called the “Standard
Plugin”. If a plugin p is a package plugin, the value of isPackagePlugin(p) holds true
and enclosedPlugins(p) returns the set of all the plugins enclosed in p.

72

Chapter 5

CoreASM: The Plugins

Most of the functionalities of CoreASM and its language constructs are provided
through plugins to the CoreASM kernel. In this chapter we present the specification
of those plugins that are currently available as part the CoreASM project. Most of
these plugins are part of the standard library of CoreASM and can be loaded by
simply loading the Standard package plugin.

Here, we divide the plugins into four categories: plugins that extend the CoreASM
language by introducing new rule constructs (Section 5.1), plugins that provide the
primitive data types such as numbers and character strings (Section 5.2), plugins that
offer more complex data structures as collections of other elements (Section 5.3), and
lastly, auxiliary plugins that extend the language and the engine with practically use-
ful constructs and functionalities such as input/output mechanisms and scheduling
policies (Section 5.4). The final section of this chapter introduces a special plugin,
called JASMine, that allows access to Java objects and classes from CoreASM speci-
fications.

Notation

Throughout this chapter, we use the pattern-action notation of Section 4.2.1 to for-
mally define rule constructs, operators, and expression forms. In addition, we use the
notation

foo: A -> B
in the description of a plugin p, denoting the extension of the vocabulary of the
CoreASM state by plugin p through addition of a new Function element fooFunction,
with the following specification:

fooFunction ∈ FunctionElement

(“foo”, fooFunction) ∈ pluginFunctions(p)
signature(fooFunction) ≡ 〈“A”, “B”〉

73

5. CoreASM: The Plugins CoreASM Documentation

5.1 Standard Rule Constructs

Abstract state machines come with a handful of standard control structures or tran-
sition rules (see Section 2.1.3). The most basic ASM rules (assignment, import, and
skip) are defined in the kernel of the CoreASM engine as explained in Section 4.2.3. In
this section, we extend the parser and the interpreter of the CoreASM engine through
a number of rule plugins that provide the syntax and the semantics of standard and
commonly-used ASM rule forms. The result of evaluating each rule, as we explained
earlier, will be a multiset of update instructions that becomes the underlying value
for the corresponding rule node in the parse tree.

We initiate by presenting rule plugins for all the rule forms defined for basic ASMs;
we will then introduce plugins providing Turbo ASMs rule forms.

5.1.1 Block Rule Plugin

The most fundamental control structure in ASM is the block-rule, specified as fol-
lows:1

Block Rule

L {λ1
e
r . . . λn

e
r } M → choose i ∈ [1..n] with ¬evaluated(λi)

pos := λi
ifnone

[[pos]] := (undef,
⋃
i∈[1..n] updates(λi), undef)

Here, all the rules in a block are evaluated in an unspecified order, with the final
result being the multiset-union of all the update instructions produced by the various
rules in the block.

5.1.2 Conditional Rule Plugin

Close in importance comes the conditional rule construct, or the if-then-else rule.
We accept a slightly extended syntax, where the guard is not restricted to be a
formula (basically a Boolean predicate, as per Definition 2.4.14 in [20]), but rather
any expression that may return true. This guarantees that plugins will be able to
extend the set of allowable guards if needed. Notice that this approach is conservative
with respect to the standard definition, given that formulae in the sense of [20] are
indeed expressions supported by the Predicate Logic plugin (Section 5.2.1) in the
CoreASM standard library.

1We provide here a rule for an n-elements block, whereas one for a two-elements block would
suffice. Notice also that the same rule could be used for the alternative syntax R par Q, meaning
that P and Q are to be executed in parallel. Finally, also note that we are disregarding here the
scope constructors provided by the grammar—either relying on braces { } or on indentation to
express nesting are common choices.

74

5. CoreASM: The Plugins CoreASM Documentation

Conditional Rule

L if α
e
e then β

e
r M → pos := α

L if αv then β
e
r M → if v = truee then pos := β else [[pos]] := (undef, {||}, undef)

L if αv then βu M → [[pos]] := (undef, u, undef)

L if α
e
e then β

e
r else γ

e
r M → pos := α

L if αv then β
e
r else γ

e
r M → if v = truee then pos := β else pos := γ

L if αv then βu else γ
e
r M → [[pos]] := (undef, u, undef)

L if αv then β
e
r else γu M → [[pos]] := (undef, u, undef)

5.1.3 The let-rule Plugin

The let-rule construct allows the definition of environment (read-only) variables (also
called logical variables) which are not defined in the ASM state, but in a finite local
environment. Once defined, the value of a logical variable cannot be updated by a
transition rule.

Let Rule

L let αx = β
e
e in γ

e
r M → pos := β

L let αx = βv in γ
e
r M → pos := γ

AddEnv(x, v)

L let αx = βv in γu M → RemoveEnv(x)
[[pos]] := (undef, u, undef)

In a let-rule of the form ‘let x = e in R’ the scope of the logical variable x is the
rule R but not the expression e.

5.1.4 The extend-rule Plugin

The extend rule is a syntactical sugar that imports a new element and adds it to a
universe (extends the universe) [20, Table 2.4]. The semantics of an extend-rule of
the form ‘extend U with x do R’ is as follows: a new element is created and put
in a logical variable x, the given rule R is evaluated, and the result of the evaluation
of the extend-rule will be the union of the update multiset of its inner rule and a
single update that adds the new element to universe U .

75

5. CoreASM: The Plugins CoreASM Documentation

ExtendRule

L extend α
e
e with βx doγ

e
r M → pos := α

L extend αv with βx doγ
e
r M → if isUniverse(v) then

pos := γ
let e = new(Element) in

AddEnv(x, e)
else

Error(‘Extending a non-universe.’)

L extend αv with βx doγu M → RemoveEnv(x)
let u′ = u ∪ {〈uniLoc(v, e), truee, updateAction〉} in

[[pos]] := (undef, u′, undef)
where

uniLoc(v, e) ≡ (name, 〈e〉) s.t. stateUniverse(state,name) = v

5.1.5 The choose-rule Plugin

The choose-rule has the form ‘choose x ∈ X with ϕ do R’ where X is a collection
of elements, ϕ is a Boolean expression and R is a rule. The semantics of the rule
is execute R with an arbitrary element x from X that satisfies ϕ. In CoreASM, we
extend this rule form by an optional ifnone clause that acts as an ‘else’ part: if
no such element can be found the ifnone rule will be evaluated. We present here
a simple form of choose-rule, with no additional condition on the chosen value and
with an existing ifnone clause. A more comprehensive semantic definition is provided
in Appendix A.5.1.

Choose Rule

L choose αx in β
e
e doγ

e
r ifnone δ

e
r M → pos := β

L choose αx in βv doγ
e
r ifnone δ

e
r M → if enumerable(v) then

let s = enumerate(v) in
if |s| > 0 then

choose t ∈ s do
AddEnv(x, t)

pos := γ
else

pos := δ
else

Error(‘Choosing from a non-enumerable.’)
L choose αx in βv doγu ifnone δ

e
r M → RemoveEnv(x)

[[pos]] := (undef, u, undef)
L choose αx in βv doγ

e
r ifnone δu M → [[pos]] := (undef, u, undef)

76

5. CoreASM: The Plugins CoreASM Documentation

5.1.6 The forall-rule Plugin

The semantic definition of forall-rule is similar to that of choose-rule with the
difference that all the elements of the given enumerable element that satisfy the
optional guard are given a chance to be the free variable in the do-rule. Here, we
present the semantics of forall-rule with a guard. The semantics of forall with no
guard is presented in Appendix A.5.2.

Forall Rule

L forall αx in β
e
e 1 with γ

e
e 2 doδ

e
r M → pos := β

[[pos]] := (undef, {||}, undef)
considered(β) := {}

L forall αx in βv1 with γ
e
e 2 doδ

e
r M → if enumerable(v1) then

let s = enumerate(v1)\considered(β) in
if |s| > 0 then

choose t ∈ s do
AddEnv(x, t)
considered(β) := considered(β) ∪ {t}

pos := γ
else

Error(‘Forall on a non-enumerable element’)

L forall αx in βv1 with γv2 doδ
e
r M → if v2 = truee then

pos := δ
else

pos := β
RemoveEnv(x)
ClearTree(γ)

L forall αx in βv1 with γv2 doδu M → pos := β
RemoveEnv(x)
ClearTree(γ)
ClearTree(δ)
[[pos]] := (undef, updates(pos) ∪ u, undef)

Notice that considered is used to keep track of values already considered for
assignment to the free variable.

5.1.7 The case-rule Plugin

We present here the specification for a plugin implementing a parallel form of a switch
case rule. The syntax is similar to the one that is used in [71],2 but the semantics is
quite different. Instead of evaluating the first rule with a matching guard value, all
the rules with matching guard values will be evaluated in parallel. In essence, this
parallel-case rule acts as a block rule in which all child rules are guarded against a
given value.

2Here we use colons (:) instead of arrows (→).

77

5. CoreASM: The Plugins CoreASM Documentation

To evaluate this rule, the case condition will be evaluated first and then all the
guards will be evaluated in an unspecified order. Afterward, rules with a guard
value equal to the value of the case condition will be evaluated. Finally, the updates
generated by the matching cases are united to form the set of updates generated by
the parallel-case rule. Formally, the construct is defined as follows:

Case Rule

L case α
e
e of {λ1

e
e 1 : λ

′
1
e
r 1 . . .

λn
e
e n : λ

′
n
e
r n} M → pos := α

L case αv of {λ1
e
? 1 : λ

′
1
e
r 1 . . .

λn
e
? n : λ

′
n
e
r n} M →

choose i in [1..n] with ¬evaluated(λi)
pos := λi

L case αv of {λ1v1 : λ
′
1
e
? 1 . . .

λnvn : λ
′
n
e
? n} M →

choose i in [1..n] with equal(v, vi) ∧ ¬evaluated(λ′i)
pos := λ′i

ifnone
[[pos]] := (undef,

⋃
i∈[1..n]∧equal(v,vi)

updates(λ′i), undef)

5.1.8 The TurboASM Plugin

Basic ASMs are further extended by operators for sequential composition and itera-
tion of ASMs, and also by parameterized submachines [20]. These extended ASMs
are called Turbo ASMs. Following the definitions of those operators, the TurboASM
plugin provides sequentiality and iteration rule forms, together with support for local
state definitions and constructs allowing rules to return values.

The seq-rule

Sequential composition of rules is facilitated by the seq-rule acting as an operator on
rules. According to [20, Def. 4.1.1], the semantics of ‘P seq Q’ is defined as the effect
of first executing P in the current state A, and then executing Q in the resulting state
A + UP where UP is the update set produced by P . If UP is inconsistent, the result
of the sequence composition will be UP .

Since we want to model the effect of evaluating the second rule in a sequence in
the state that would be produced by applying the updates produced by the first rule,
we have to “simulate” the application of the updates, without really modifying the
current state. This is obtained by using a stack of states, managed through three
macros: PushState copies the current state in the stack, PopState retrieves the state
from the top of the stack (thus discarding the current state), and Apply(u) applies
the updates in the update set u to the current state. Formal definitions for these
macros are given in Appendix A.1. Based on the intuitive understanding of these
macros, the interpreter plugin for the seq-rule can be specified as follows:

78

5. CoreASM: The Plugins CoreASM Documentation

SeqRule

L α
e
r 1 seq β

e
r 2 M → pos := α

L αu1 seq β
e
r 2 M → let uSet = Aggregate(u1) in

if isConsistent(uSet) ∧ aggregationConsistent(u1) then
PushState
Apply(uSet)
pos := β

else
[[pos]] := (undef, u1, undef)

L αu1 seq βu2 M → local uMset [uMset ← Compose(u1, u2)] in
PopState
[[pos]] := (undef, uMset, undef)

Before consistency of the update instructions produced by the first rule can be
checked, the resultant update instructions must be aggregated into regular updates.
If both aggregation consistency and update set consistency hold, the resultant up-
date set is applied to the current state producing a temporary state; otherwise the
inconsistent update multiset is returned. If the update instructions produced by the
first rule are consistent, the second rule is fired in the temporary state, resulting in
the second update multiset. The first and second update multisets must then be se-
quentially composed. The update multiset resulting from the sequential composition
is the update multiset produced by the seq-rule in the simulated machine.

In order to improve the readability of specifications, CoreASM provides the fol-
lowing syntax for the sequential composition of rules, in which the next keyword is
optional:

seq P next Q ≡ P seq Q

The iterate Rule

The iterate-rule repeatedly executes its body, until the update set produced is either
empty or inconsistent; at that point, the accumulated updates are computed. The
resulting update set can be inconsistent if the computation of the last step had
produced an inconsistent set of updates. The semantic definition is similar in principle
to that of the seq-rule:

79

5. CoreASM: The Plugins CoreASM Documentation

Iterate Rule

L iterate α
e
r M → PushState

composedUpdates(pos) := {||}
pos := α

L iterate αu M → if u 6= {||} then
let uSet = Aggregate(u),

composed ← Compose(composedUpdates(pos), u) in
composedUpdates(pos) := composed
if aggregationConsistent(u) ∧ isConsistent(uSet) then

Apply(uSet)
ClearTree(α)
pos := α

else
PopState
[[pos]] := (undef, composed, undef)

else
PopState
[[pos]] := (undef, composedUpdates(pos), undef)

Notice here how iteration is carried on in a separate state, after saving the original
one in the stack. After the iteration is completed, the update instruction multisets
are composed into a single multiset of update instructions to be applied to the initial
state. The initial state is then restored from the stack, and the computed updates
are assigned to the node. Also, notice that after each step in the iteration, the entire
subtree is cleared (i.e., the [[·]] function of each node is set to undef), so that the
computation of the next step can proceed on a clean parse tree.

The while Rule

The non-standard while-rule can also be defined in a similar way. The semantics of a
rule ‘while (cond) R’ is to iterate the execution of R as long as cond evaluates to true
and R does not produce an empty or inconsistent update set. Thus, the following
equivalence holds:

while (cond) R ≡ iterate if cond then R

Thus, the semantics of the while rule closely follows that of the iterate rule:

80

5. CoreASM: The Plugins CoreASM Documentation

While Rule

L while (α
e
e) βr M → PushState

composedUpdates(pos) := {||}
pos := α

L while (αv) β
e
r M → if v = truee then

pos := β
else

PopState
[[pos]] := (undef, composedUpdates(pos), undef)

L while (αv) βu M → if u 6= {||} then
let uSet = Aggregate(u),

composed ← Compose(composedUpdates(pos), u) in
composedUpdates(pos) := composed
if aggregationConsistent(u) ∧ isConsistent(uSet) then

Apply(uSet)
ClearTree(α)
ClearTree(β)
pos := α

else
PopState
[[pos]] := (undef, composed, undef)

else
PopState
[[pos]] := (undef, composedUpdates(pos), undef)

Notice that other choices for the semantics of while were also possible: for exam-
ple, [20, Example 4.1.4] presents a variant that does not terminate when the update
set produced by the rule is empty (their Example 4.1.2 is instead consistent with our
definition).

More generally, both iterate and while could also be defined to terminate when
the update set contributed by the body of the rule does not modify the state. To our
knowledge, this semantics has not been explored and applied in practice.

Local State and Return Values

Local state is introduced in rules by a special syntax [20, Def. 4.1.5] which introduces
local state function names together with their initialization rules. Updates made to
these special locations are then discarded before returning the final update set to
the caller. In the same spirit, return values are simulated by designating a special
location in the state, and by using the last update to that location as return value.

We sketch here only the basic idea of how local state and return values are han-
dled. In particular, we omit the details of how local state initialization is performed,
based on the observation that a declaration of local state with initialization can be
transformed into a declaration without initialization followed by an explicit sequential
composition of an assignment and the main rule.

81

5. CoreASM: The Plugins CoreASM Documentation

Local Rule

L local λ1x1 . . .
λnxn in α

e
r M → pos := α

L local λ1x1 . . .
λnxn in αu M → [[pos]] := (undef, u	 {x1, . . . , xn}, value(α))

where the 	 operator is defined as follows:

U 	H = {〈l, v, a〉 ∈ U | namelc(l) 6∈ H}

A frequent and idiomatic use of Turbo ASMs is to compute functions by executing
a rule and then extracting a value from the resulting set of updates, rather than
applying the updates to the state. The semantics of the following Turbo ASM call
with return values

l← R(a1, . . . , an)

is to replace every occurrence of a special variable result in the body of the rule
R with l, and call rule R [20, Def. 4.1.7]. The following pattern provides a formal
semantics for this rule form in CoreASM:

Return Result Rule

L α
e
l ← βx(λ1

e
? 1, . . . ,

λn
e
? n) M → if isRuleName(x) then

ReturnResultRuleCall(ruleValue(x), 〈λ1, . . . , λn〉, l)

The ReturnResultRuleCall routine, defined below, describes how calls to rules with
the special result location are handled in CoreASM.

Turbo ASM Plugin

ReturnResultRuleCall(r, args, l) ≡
if workCopy(pos) = undef then

let params = concat(“result”, param(r)), args = concat(l, args) in
let b′ = CopyTreeSub(body(r), param(r), args) in

workCopy(pos) := b′

parent(b′) := pos
pos := b′

else
[[pos]] := (undef, updates(workCopy(pos)), value(workCopy(pos)))
workCopy(pos) := undef

The syntax provided above, however, is not particularly practical, as the compu-
tation is restricted to be a statement assigning a value to a given identifier, and so
cannot be used inside a complex expression. For example, one has to write

x← R(a1, . . . , an)
y ← Q(b1, . . . , bm)
seq
z := x+ y

instead of the more natural

82

5. CoreASM: The Plugins CoreASM Documentation

z := R(a1, . . . , an) +Q(b1, . . . , bm)

Hence, we propose here an alternative syntax and semantics of the form

return e in R

in which e is an expression and R is a rule. The semantics of this construct is to
execute R in the current state A and if the resulting update multiset is consistent,
evaluate e in the state A + UR (where UR is the updates produced by R) and return
the value of e, discarding UR. We formally describe this semantics in the following
rules:

ReturnRule

L return α
e
e in βr M → pos := β

L return α
e
e in βu M → let uSet = Aggregate(u) in

if isConsistent(uSet) ∧ aggregationConsistent(u) then
PushState
Apply(uSet)
pos := α

else
[[pos]] := (undef, {||}, undefe)

L return αv in βu M → PopState
[[pos]] := (undef, {||}, v)

In this construct, the rule r is executed first; the return expression is evaluated in
the state obtained by provisionally applying the updates from r to the current state,
and the resulting value is returned, while the updates and the provisional state itself
are discarded.

5.2 Primitive Data Types

In this section we introduce those plugins that extend the CoreASM engine with
backgrounds of primitive data types, basically numbers and character strings. We
also include in this section the Predicate Logic plugin that offers Boolean operators
defined on Boolean elements introduced in the CoreASM kernel.

5.2.1 The Predicate Logic Plugin

The Predicate Logic plugin provides operators implementing a Boolean algebra. Since
the corresponding background is already provided by the kernel, this plugin extends
only the parser and the interpreter of the CoreASM engine to provide the standard
Boolean operators together with the universal and the existential quantifiers.

The only unary operator provided by this plugin is the negation operator: not.
The semantics of this operator is very simple and is formally defined by the following
rule:

83

5. CoreASM: The Plugins CoreASM Documentation

Predicate Logic Plugin: not

L not α
e
? M

[850]
→ if ¬evaluated(α) then

pos := α
else

if isBoolean(value(α)) then
if value(α) = truee then

[[pos]] := (undef, undef, falsee)
else

[[pos]] := (undef, undef, truee)
if value(α) = undefe then

[[pos]] := (undef, undef, undefe)

The Predicate Logic plugin also provides the standard binary operators and, or,
xor, and implies, together with the not-equality operator !=. As an example, we
present here the semantic definition of the logical implication operator:

Predicate Logic Plugin: implies

L α
e
? implies β

e
? M

[375]
→ choose λ ∈ {α, β} with ¬evaluated(λ)

pos := λ
ifnone

if isBoolean(l) ∧ isBoolean(r) then
if ((value(α) = falsee) ∨ (value(β) = truee)) then

[[pos]] := (undef, undef, truee)
else

[[pos]] := (undef, undef, falsee)
else

if ∀x ∈ {l, r} isBoolean(x) ∨ x = undefe then
[[pos]] := (undef, undef, undefe)

where
l ≡ value(α), r ≡ value(β)

In addition, the Predicate Logic plugin also provides the membership operator ‘∈’.
If the operand on the right hand side (rhs) is an enumerable, this operator returns
true if that enumerable includes the operand on the left hand side (lhs). We have:

Predicate Logic Plugin: memberof

L α
e
? memberof β

e
? M

[550]
→ choose λ ∈ {α, β} with ¬evaluated(λ)

pos := λ
ifnone

if enumerable(value(α)) then
if value(β) ∈ enumerate(value(α)) then

[[pos]] := (undef, undef, truee)
else

[[pos]] := (undef, undef, falsee)
if value(α) = undefe then

[[pos]] := (undef, undef, undefe)

The formal definition of other operators is available in Appendix A.5.3.

84

5. CoreASM: The Plugins CoreASM Documentation

Two logical quantifiers ∃ and ∀ are also provided by the Predicate Logic plugin
with the following syntax

exists x in X with ϕ
forall x in X holds ϕ

in which X is an enumerable, ϕ is a Boolean predicate and the scope of x is limited
to ϕ. We present here the semantic definition of the existential quantifier. The defi-
nition of the universal quantifier is very similar and is presented in Appendix A.5.3.
Notice again the use of the considered function to keep track of the elements that
we considered so far.

Predicate Logic Plugin: exists

L existsαx in β
e
e with γ

e
e M → pos := β

considered(β) := {}
L existsαx in βv with γ

e
e M → if enumerable(v) then

let s = enumerate(v)\considered(β) in
if |s| > 0 then

choose t ∈ s do
AddEnv(x, t)
considered(β) := considered(β) ∪ {t}

pos := γ
else

[[pos]] := (undef, undef, falsee)
else

Error(‘Cannot enumerate a non-enumerable element’)

L existsαx in βv with γv M → if (value(γ) = truee) then
[[pos]] := (undef, undef, truee)

else
pos := β

RemoveEnv(x)
ClearTree(γ)

5.2.2 The Number Plugin

The Number plugin extends the abstract storage, the parser, and the interpreter of
the CoreASM engine to provide the Number background, representing the domain of
Real numbers R, together with necessary functions and operators needed to work
with both integer and real numbers. The background of Number elements is defined
as numberBkg ∈ BackgroundElement; we have

name(numberBkg) = “NUMBER”

newValue(numberBkg) = zero

Number elements are values of the domain NumberElement. We have

∀ne ∈ NumberElement memberue(numberBkg, n) = true

85

5. CoreASM: The Plugins CoreASM Documentation

We define the following functions to provide a mapping from Number elements
to the actual numeric values they represent and vice versa:

numberElement : R 7→ NumberElement

numericValue : NumberElement 7→ R

Finally, the equality of two Number elements is defined as the equality of the
numeric values they represent (see also Section 4.1):

∀ne′ ∈ NumberElement equalNumber(ne, ne′) ≡ numericValue(ne) = numericValue(ne′)

Operators

The Number plugin provides the following numeric operators:

• “+” : the addition binary operator (precedence level: 750)

• “-” : the subtraction binary operator (precedence level: 750)

• “-” : the negation unary operator (precedence level: 850)

• “*” : the multiplication binary operator (precedence level: 800)

• “/” : the division binary operator (precedence level: 800)

• “div” : the integer division binary operator (precedence level: 800)
a div b ≡ floor(a/b)

• “%” : the modulus (remainder) binary operator (precedence level: 800)
a % b ≡ floor(a/b)

• “ˆ” : the exponential binary operator (precedence level: 820)

We present here the semantics of the addition operator (i.e., “+”). The same approach
is used to define the rest of the above operators.

Number Plugin

L α
e
? + β

e
? M

[750]
→ choose λ ∈ {α, β} with ¬evaluated(λ)

pos := λ
ifnone

if ∀x ∈ {l, r} x ∈ NumberElement ∨ x = undefe then
if l = undefe ∨ r = undefe then

[[pos]] := (undef, undef, undefe)
else

[[pos]] := (undef, undef, result)
where

result ≡ numberElement(numericValue(l) + numericValue(r))
l ≡ value(α)
r ≡ value(β)

86

5. CoreASM: The Plugins CoreASM Documentation

The Number plugin also provides the following relational operators defined on Num-
ber elements:

• “>” : greater-than binary operator (precedence level: 650)

• “>=” : greater-than or equal-to binary operator (precedence level: 650)

• “<” : less-than binary operator (precedence level: 650)

• “<=” : less-than or equal-to binary operator (precedence level: 650)

The greater-than operator is defined as follows:

Number Plugin

L α
e
? > β

e
? M

[650]
→ choose λ ∈ {α, β} with ¬evaluated(λ)

pos := λ
ifnone

if ∀x ∈ {l, r} x ∈ NumberElement ∨ x = undefe then
if l = undefe ∨ r = undefe then

[[pos]] := (undef, undef, undefe)
else

[[pos]] := (undef, undef, result)
where

result ≡ booleanValue(numericValue(l) > numericValue(r))
l ≡ value(α)
r ≡ value(β)

The semantics of the other three relational operators are also defined in a similar
fashion.

Functions

The Number plugin extends the vocabulary of the state with the following two func-
tions:

• infinity: -> NUMBER
returns the positive infinity.

• toNumber: ELEMENT -> NUMBER
if possible, maps the given element to a Number element it represents.

Number Classes

The Number plugin provides the user with the following predicates in order to identify
whether a number belongs to a particular numerical class:

• isNaturalNumber: NUMBER -> BOOLEAN

fGetValue(isNaturalNumberFunction, 〈n〉) =
{

truee, if numericValue(n) ∈ N;
falsee, otherwise.

.

87

5. CoreASM: The Plugins CoreASM Documentation

• isIntegerNumber: NUMBER -> BOOLEAN

fGetValue(isIntegerNumberFunction, 〈n〉) =
{

truee, if numericValue(n) ∈ Z;
falsee, otherwise.

.

• isRealNumber: NUMBER -> BOOLEAN

fGetValue(isRealNumberFunction, 〈n〉) =
{

truee, if numericValue(n) ∈ R;
falsee, otherwise.

.

Number Characteristics

To identify the characteristics of numbers, the following predicates are defined on all
Number elements:

• isEvenNumber: NUMBER -> BOOLEAN
fGetValue(isEvenNumberFunction, 〈n〉) ={

truee, if numericValue(n) ∈ Z ∧ numericValue(n)%2 = 0;
falsee, otherwise.

.

• isOddNumber: NUMBER -> BOOLEAN
fGetValue(isOddNumberFunction, 〈n〉) ={

truee, if numericValue(n) ∈ Z ∧ numericValue(n)%2 = 1;
falsee, otherwise.

.

Number Ranges

Number plugin also provides the NumberRange background which is the back-
ground of number ranges of the form [a..b : s] where a and b are respectively the
starting and the ending values of the range (inclusive) and s is the step of the
range. The background of Number Range elements is provided by numberRangeBkg ∈
BackgroundElement, where

name(numberRangeBkg) = “NUMBER RANGE”

newValue(numberRangeBkg) = [0..1 : 1]

The following functions are defined on Number Range elements (see Section 4.1):

• bkg(r) = “NumberRange” where r ∈ NumberRange.

• rangeFrom : NumberRange 7→ Number

holds the lower boundary of the Number Range element.

• rangeTo : NumberRange 7→ Number

holds the upper boundary of the Number Range element.

• rangeStep : NumberRange 7→ Number

holds the range step.

88

5. CoreASM: The Plugins CoreASM Documentation

• ∀nr1, nr2 ∈ NumberRange equalNumberRange(nr1, nr2) ≡
rangeFrom(nr1) = rangeFrom(nr2)
∧ rangeTo(nr1) = rangeTo(nr2)
∧ rangeStep(nr1) = rangeStep(nr2)

• ∀r ∈ NumberRange, enumerable(r)
All Number Range elements are enumerable.

• enumerateIntegerRange : NumberRange 7→ List(Element)

provides a collection of Elements representing the numbers that are included in
the given Number Range.

enumerate(r) ≡ [x | x = rangeFrom(r)+i∗rangeStep(r) ∧ i ∈ N ∧ x ≤ rangeTo(r)]

The following expression form creates a Number Range element:

Integer Range

L [α
e
? ..β

e
? : γ

e
?] M → choose λ ∈ {α, β, γ} with ¬evaluated(λ)

pos := λ
ifnone

if ∀v ∈ {l, r, s} isNumber(v) then
let newRange = newValue(numberRangeBack) in

rangeFrom(newRange) := numericValue(l)
rangeTo(newRange) := numericValue(r)
rangeStep(newRange) := numericValue(s)
[[pos]] := (undef, undef,newRange)

else
Error(‘Both operands must be numbers.’)

where
l ≡ value(α)
r ≡ value(β)
s ≡ value(γ)

In the above form, the step of a range (γ) can be omitted in which case it would
be considered to be 1.

5.2.3 The String Plugin

The String plugin provides all that is needed to work with character strings as el-
ements of the CoreASM state. The background of String elements is provided by
stringBack ∈ BackgroundElement; we have

name(stringBack) = “STRING”

newValue(stringBack) = emptyString

We model String elements as values of a domain StringElement. The following
functions are defined on String elements:

89

5. CoreASM: The Plugins CoreASM Documentation

• stringValue : StringElement 7→ List(Character)

for every String element returns the sequence of characters in that string.

• stringElement : Element 7→ StringElement

maps every element to a String representation of that element. The exact
semantics of this function depends on the Element itself and it is left abstract
here.

• concatString : StringElement × StringElement 7→ StringElement

concatenates two string elements into one. For all s1, s2 ∈ StringElement, we
have

concatString(s1, s2) ≡ concat(stringValue(s1), stringValue(s2))

For every s ∈ StringElement we have (see Section 4.1):

• bkg(s) = “StringElement”

• ∀s′ ∈ StringElement equalString(s, s′) ≡ stringValue(s) = stringValue(s′)

• ∀s ∈ StringElement, enumerable(s)
All String elements are enumerable.

• enumerateString(s) = l ∈ List(StringElement)

where l is a list of String elements representing the characters of s.

Operators

The String plugin provides the following concatenation operator on String elements:

String Plugin

L α
e
? + β

e
? M

[750]
→ choose λ ∈ {α, β} with ¬evaluated(λ)

pos := λ
ifnone

if l = undefe ∧ r = undefe then
[[pos]] := (undef, undef, undefe)

else
if l ∈ StringElement ∨ r ∈ StringElement then

[[pos]] := (undef, undef, concatString(l, r))
// we assume an automatic conversion of elements to
// string elements will be applied using the
// toString(e) function

where
l ≡ value(α)
r ≡ value(β)

90

5. CoreASM: The Plugins CoreASM Documentation

Functions

The String plugin extends the CoreASM state with the following two functions defined
on String elements:

• toString: ELEMENT -> STRING
returns a string representation of the given element. We have,
∀e ∈ Element valuefe(toStringFunction, 〈e〉) = stringElement(e)

• strlen: STRING -> NUMBER
returns the length of the given string. For all s ∈ StringElement we have,
valuefe(strlenFunction, 〈s〉) = numberElement(|stringValue(s)|)

The String plugin relies on the availability of the Number background provided by
the Number plugin.

5.3 Collections

We use the term collection to refer to the most abstract concept of a grouping of zero
or more elements with potential multiplicities of more than one. In this section, we
introduce those CoreASM plugins that offer backgrounds implementing different kinds
of collections. The most liberal implementation of collections in CoreASM is provided
by the Bag plugin (Section 5.3.3). Other plugins, such as the Set plugin (Section 5.3.2)
and the List plugin (Section 5.3.4), offer more specialized forms of collections. The
Collection plugin, introduced in Section 5.3.1, provides the foundation for collection
backgrounds in CoreASM.

5.3.1 The Collection Plugin

The Collection plugin provides a cornerstone for collections in CoreASM, offering a
set of common functions and rule forms defined on collections. However, each specific
collection background (e.g., list or set) is provided separately by its corresponding
plugin.

Abstract Map Elements

Some collection elements can be represented as a mapping of elements. A collection el-
ement that can represent itself as a map is considered to be an AbstractMapElement

by the Collections plugin. The value of the following function has to be defined by
the background of elements that belong to AbstractMapElement:

getMapbkg : AbstractMapElement 7→ (Element 7→ Element)

where bkg is the background of the element.

91

5. CoreASM: The Plugins CoreASM Documentation

Modifiable Collections

The Collection plugin introduces a modifiable-collection attribute on elements, de-
fined by the following function:

isModifiableCollection : Element 7→ Boolean

The modifiability attribute set on an element indicates that generic collection modi-
fications (at this point limited to addition and removal of an element) can be applied
to the element. Plugins that provide modifiable collection elements (such as sets and
list) must also provide the semantics of such modifications through two functions of
the form

computeAddUpdatebkg : Location × Element 7→ Multiset(Update)

computeRemoveUpdatebkg : Location × Element 7→ Multiset(Update)

where bkg is the collection background the plugin provides. These two functions
are expected to produce proper update instructions to add/remove elements to/from
locations holding collection elements.

Rule Forms

The Collection plugin extends the CoreASM language with two rule forms for adding
and removing elements to and from collections. As explained above, the semantics
of these rule forms relies on the add and remove semantics provided by the plugin of
each collection element.

Collection Plugin: Add-To

L add α
e
e to β

e
l M → choose τ ∈ {α, β} with ¬evaluated(τ)

pos := τ
ifnone

let c = value(β) in
if isModifiableCollection(c) then

let u = computeAddUpdatebkg(c)
(loc(β), value(α)) in

[[pos]] := (undef, u, undef)

Collection Plugin: Remove-From

L remove α
e
e from β

e
l M → choose τ ∈ {α, β} with ¬evaluated(τ)

pos := τ
ifnone

let c = value(β) in
if isModifiableCollection(c) then

let u = computeRemoveUpdatebkg(c)
(loc(β), value(α)) in

[[pos]] := (undef, u, undef)

92

5. CoreASM: The Plugins CoreASM Documentation

Functions

The Collection plugin also provides the following functions defined on enumerable
elements:

• foldl: ELEMENT * FUNCTION * ELEMENT -> ELEMENT
which implements the following function:
foldl([x1, . . . , xn], f, i) ≡ f(xn, f(xn−1, . . . f(x1, i))) . . .)

• foldr: ELEMENT * FUNCTION * ELEMENT -> ELEMENT
which implements the following function:
foldr([x1, . . . , xn], f, i) ≡ f(x1, f(x2, . . . f(xn, i))) . . .)

• fold: ELEMENT * FUNCTION * ELEMENT -> ELEMENT
is the same as foldr.

• fold: ELEMENT * FUNCTION -> ELEMENT
which implements the following function:
map([x1, . . . , xn], f) ≡ [f(x1), f(x2), . . . f(xn)]

• filter: ELEMENT * FUNCTION -> ELEMENT
which implements the following function:
filter({x1, . . . , xn}, f) ≡ {xi | f(xi)}
filter([x1, . . . , xn], f) ≡ [xi | f(xi)]

The Collection plugin depends on the availability of the Number background provided
by the Number plugin.

5.3.2 The Set Plugin

The Set plugin extends the CoreASM state by providing the background of sets with its
operations and functions.3 The background of Set elements is provided by setBack ∈
BackgroundElement; we have

name(setBack) = “SET”

newValue(setBack) = emptySet

Set elements are values of the domain SetElement. The following functions define
the interface of Set elements by providing a mapping between Set elements and the
actual set of elements they represent:

• setElement : Set(Element) 7→ SetElement

for every set of elements, returns a Set element representation of that set.
3This section is based on Mashaal Memon’s M.Sc. work previously published in [64] with im-

provements and modifications.

93

5. CoreASM: The Plugins CoreASM Documentation

• setMembers : SetElement 7→ Set(Element)

for every Set element, returns the set of its members.

For all s ∈ SetElement we have:

• bkg(s) := “Set”

• ∀s′ ∈ SetElement equalSet(s, s′) ≡ setMembers(s) = setMembers(s′)

• enumerable(s)
All Set elements are enumerable.

• enumerateSet(s) = setMembers(s).

• s ∈ FunctionElement

All Set elements also behave as functions.

• classfe(s) = static

• ∀e ∈ Element valuefe(s, 〈e〉) ≡ booleanValue(e ∈ setMembers(s))

• s ∈ AbstractMapElement

All Set elements are abstract map elements.

• getMapSet(s) = m | ∀e ∈ setMembers(s) m(e) = valuefe(s, 〈e〉)

To facilitate partial updates to sets, the add/to-rule and remove/from-rule are
supported by the Set plugin (see Section 5.3.1). We have

∀s ∈ SetElement isModifiableCollection(s)

The single addition of an element from a set, or the add/to-rule, results in an instruc-
tion to carry out a setAddAction action; the removal of a single element from a set,
or the remove/from-rule, results in an instruction to perform a setRemoveAction
action. For all loc ∈ Location and value ∈ Element, we have

computeAddUpdateSet(loc, value) ≡ {|〈loc, value, setAddAction〉|}
computeRemoveUpdateSet(loc, value) ≡ {|〈loc, value, setRemoveAction〉|}

Notice that no checks are made to ensure that the value of the location is in fact
a set. This is deferred to the aggregation phase.

Set Enumeration and Comprehension

The set plugin provides two methods of set description: namely set enumeration and
set comprehension. With the former, one is able to explicitly describe the contents
of a set by listing its individual elements:

94

5. CoreASM: The Plugins CoreASM Documentation

Set Plugin: Set Enumeration

L { λ1
e
? 1, . . . ,

λn
e
? n } M → choose i ∈ [1..n] with ¬evaluated(λi)

pos := λi
ifnone

let s = {value(λi) | i ∈ [1..n]} in
[[pos]] := (undef, undef, setElement(s))

The latter allows one to describe set contents algorithmically. There are many
accepted syntactic and semantic variants; the Set plugin provides three variants which
we believe encompass a wide range of algorithmically expressible finite sets. Given a
set comprehension expression of the form

{x0 is exp0 | x1 in exp1, . . . , xn in expn with expg}

we refer to the free variable x0 as the specifier variable, the expression exp0 as the spec-
ifier expression, the free variables x1 . . . xn as the constrainer variables, exp1 . . . expn
as the constrainer expression, and expg as the guard.

The simplest variant of set comprehension binds the specifier variable to a con-
strainer expression producing a single enumerable element:

Set Plugin: Set Comprehension

L { αx | β1x1 in γ1
e
? 1} M →

if x = x1 then
if ¬evaluated(γ1) then

pos := γ1

else
if enumerable(value(γ1)) then

let s = {m | m ∈ enumerate(value(γ1))} in
[[pos]] := (undef, undef, setElement(s))

else
Error(‘Free variables may only be bound to enumerable elements’)

else
Error(‘Constrainer variable must have same name as specifier variable’)

Notice how we use the setElement(s) mapping to get a Set element representation
of the set s. This variant would support set comprehension expressions of the form
{x | x in X} where X is an enumerable element.

A slightly more complex version supports set comprehensions of the form

{x | x in X, y1 in Y1, . . . , yn in Yn with ϕ}

where X and Yi’s are enumerable elements and x and yi’s are free variables in ϕ.
This form binds multiple constrainer variables to multiple constrainer expressions,
and adds more fine grained control with a guard. The semantic definition of this
form involves creating temporary logical variables for each constrainer variable and
iterating their values over the values offered by their corresponding constrainer ex-
pressions and evaluating the guard for each combination of these values. A formal

95

5. CoreASM: The Plugins CoreASM Documentation

semantic definition is provided in Appendix A.5.4. This variant supports set com-
prehension expressions such as:

{x | x in X with x > z}
{x | x in {1, 3, 5}, z in {2, 4, 6} with (x+ z) in {3, 4, 5, 6, 7, 8, 9, 10}}

Finally the most complex variant of the form

{x is e | x1 in X1, . . . , xn in Xn with ϕ}

in which e is an expression, ϕ is a guard and x1 to xn are free variables in both e
and ϕ, allows the specifier to be defined in terms of a specifier expression. In this
form the constrainer variables are themselves expected to be present in the specifier
expression, and this expression is re-evaluated for all possible combinations of the
contrainer variables. Similar to the previous form, the semantics definition of this
form also involves creating logical variables for each constrainer variable, evaluating
the guard for each combination of their values, and additionally evaluating the spec-
ifier expression for each combination that satisfies the guard. The semantics of this
variation is also available in Appendix A.5.4.

The last variation is the most expressive form as it allows the user to create sets
using a function on constrainer variable values rather than simply being bound to
some subset of a single constrainer expression. Here are two examples of defining sets
using this form:

{x is {a, b, c} | a in 1..100, b in 1, 2, 3, c in aSet}
{x is y ∗ z | y in {1, 3, 5}, z in {2, 4, 6} with (y + z) in {3, 4, 5, 6, 7, 8, 9, 10}}

Operators

The Set plugin extends the vocabulary of the CoreASM engine by providing the
following operators: ⊂, ∪, ∩, and \ (set difference). Here, we present the formal
definition of ⊂ and ∪ and refer to Appendix A.5.4 for the definition of the other two
operators.

Set Plugin : Operators

L α
e
? ⊂ β

e
? M

[700]
→ choose λ ∈ {α, β} with ¬evaluated(λ)

pos := λ
ifnone

if ∀x ∈ {l, r} enumerable(x) ∨ x = undefe then
if l = undefe ∨ r = undefe then

[[pos]] := (undef, undef, undefe)
else

let lv = enumerate(l), rv = enumerate(r) in
[[pos]] := (undef, undef, (∀e ∈ lv e ∈ rv))

where
l ≡ value(α)
r ≡ value(β)

96

5. CoreASM: The Plugins CoreASM Documentation

L α
e
? ∩ β

e
? M

[675]
→ choose λ ∈ {α, β} with ¬evaluated(λ)

pos := λ
ifnone

if ∀x ∈ {l, r} SetElement(x) ∨ x = undefe then
if l = undefe ∨ r = undefe then

[[pos]] := (undef, undef, undefe)
else

let v = {x | x ∈ enumerate(l) ∧ x ∈ enumerate(r)} in
[[pos]] := (undef, undef, setElement(v))

where
l ≡ value(α)
r ≡ value(β)

Notice that the evaluation of an operation results in a new Set element rather
than modification of an existing Set element.

Aggregation Algorithm

The Set plugin is responsible for the aggregation of update instructions with setAd-
dAction and setRemoveAction that add or remove elements to and from Set elements.
The result of aggregation of set updates on a location will be a regular update as-
signing a new Set element (representing all the changes) to that location.

For every location with a set partial update, the Set plugin first checks the con-
sistency of update instructions before performing the aggregation. The following
requirements informally define the consistency of set update instructions [64]:

• If there is a regular update to a given location l along with partial updates:

– All regular updates to l may only result in a Set element.

– There cannot exist two regular updates to l resulting in two different val-
ues; this is a typical consistency requirement of regular updates.

– The Set element S assigned by the regular update(s) on l must satisfy all
the add and remove update instructions to l; i.e., ∀〈l, va, setAddAction〉 ∈
updates, va ∈ S and ∀〈l, vr, setRemoveAction〉 ∈ updates, vr 6∈ S.

• If there are only partial updates to a given location l:

– There cannot exist two update instructions adding and removing the same
element e to location l.

– The value of location l in the current state of the simulated machine must
be a Set element.

The following rule defines the aggregation algorithm offered by the Set plugin; we
have

aggregatorRule(setPlugin) ≡ @AggregateSet

97

5. CoreASM: The Plugins CoreASM Documentation

Set Plugin

AggregateSet(uMset) ≡
local resultantUpdate in
seq

result := {}
next

forall l ∈ locsToAggregate do
if regularUpdatesExist then

if inconsistentRegularUpdates ∨ regularUpdateIsNotSet ∨ addRemoveConflictWithRU then
HandleInconsistentAggregation(l, uMset, setPlugin)

else
let resultantUpdate = GetRegularUpdate(l, uMset) in

add resultantUpdate to result
else

if addRemoveConflict ∨ setNotInLocation then
HandleInconsistentAggregation(l, uMset, setPlugin)

else
let resultantUpdate = BuildResultantUpdate(l, uMset) in

add resultantUpdate to result
where

locsToAggregate ≡ {l | 〈l, v, a〉 ∈ uMset ∧ a ∈ {setAddAction, setRemoveAction}}
regularUpdatesExist ≡ ∃〈l, v, updateAction〉 ∈ uMset
inconsistentRegularUpdates ≡ ∃〈l, v1, updateAction〉 ∈ uMset,

∃〈l, v2, updateAction〉 ∈ uMset, v1 6= v2
regularUpdateIsNotASet ≡ ∃〈l, v, updateAction〉 ∈ uMset, bkg(v) 6= “Set”
addRemoveConflictWithRU ≡ addConflictWithRU ∨ removeConflictWithRU
addConflictWithRU ≡ ∃〈l, vu, updateAction〉 ∈ uMset,

∃〈l, va, setAddAction〉 ∈ uMset, va 6∈ enumerate(vu)
removeConflictWithRU ≡ ∃〈l, vu, updateAction〉 ∈ uMset,

∃〈l, vr, setRemoveAction〉,∈ uMset, vr ∈ enumerate(vu)
addRemoveConflict ≡ ∃〈l, v, setAddAction〉 ∈ uMset,∃〈l, v, setRemoveAction〉 ∈ uMset
setNotInLocation ≡ bkg(getValue(l)) 6= “Set”

In the case where at least one regular update exists for a location, after checking
the consistency of partial updates with the regular updates on that location, one of
the regular updates will be chosen as the result of the aggregation.

Set Plugin

GetRegularUpdate(loc, uMset) ≡
choose u ∈ uMset with uiLoc(u) = loc ∧ uiAction(u) = updateAction do

result := u
forall u ∈ uMset with uiLoc(u) = loc do

aggStatus(u, setPlugin) := successful

When there is no regular update for a location, all the partial updates are aggre-
gated into a regular update assigning a new Set element to the location resulting from
the addition and removal of elements from the value of the location in the current

98

5. CoreASM: The Plugins CoreASM Documentation

state.

Set Plugin

BuildResultantUpdate(l, uMset) ≡
local newSet [newSet := {}] in

seq
forall e ∈ enumerate(getValue(l)) do

if 6 ∃〈l, e, setRemoveAction〉 ∈ uMset then
add e to newSet

forall 〈l, v, setAddAction〉 ∈ uMset do
add v to newSet

next
result := 〈l, setElement(newSet), updateAction〉
forall u ∈ uMset with uiLoc(u) = l do

aggStatus(u, setPlugin) := successful

Composition Algorithm

The Set plugin provides the semantics of sequential composition of Set partial up-
dates. There are five cases to be considered:

1. If the location is not updated in the second step, all the updates of the first
step are carried forward.

2. If the location is not updated in the first step, all the updates of the second
step are carried forward.

3. If there is a regular update on the location in the second step (i.e., a Set element
is assigned to the location in the second step), all the updates in the first step
are discarded and the updates of the second step are carried forward.

4. If there is a regular update on the location in the first step and there are partial
updates in the second step, the updates need to be aggregated into one regular
update.

5. If there are only partial updates on the location in both the first and the second
step, those partial updates in the first step that are overridden by the updates
in the second step must be removed.

The Set composition algorithm, capturing the five cases above, is formally defined as
follows:

99

5. CoreASM: The Plugins CoreASM Documentation

Set Plugin

ComposeSet(uMset1, uMset2) ≡
seq
result := {||}
next
forall l ∈ locsAffected do

if locHasAddRemove(uMset1) ∧ ¬locUpdated(uMset2) then
forall ui ∈ uMset1 with uiLoc(ui) = l do

add ui to result
else if ¬locUpdated(uMset1) ∧ locHasAddRemove(uMset2) then

forall ui ∈ uMset2 with uiLoc(ui) = l do
add ui to result

else if locHasAddRemove(uMset2) ∧ locRegularUpdate(uMset2) then
forall ui ∈ uMset2 with uiLoc(ui) = l do

add ui to result
else if locHasAddRemove(uMset2) ∧ locRegularUpdate(uMset1) then

add SetAggregateLocation(l, uMset1, uMset2) to result
else if locHasAddRemove(uMset1) ∧ locHasAddRemove(uMset2) then

forall ui ∈ EradicateConflictingUpdates(l, uMset1, uMset2) do
add ui to result

where
locsAffected ≡ {l1 | 〈l1, v, a〉 ∈ uMset1} ∪ {l2 | 〈l2, v, a〉 ∈ uMset2}
locHasAddRemove(uMset) ≡ ∃〈l, v, a〉 ∈ uMset, a ∈ {setAddAction, setRemoveAction}
locRegularUpdate(uMset) ≡ ∃〈l, v, a〉 ∈ uMset, a = updateAction
locUpdated(uMset) ≡ ∃〈l, v, a〉 ∈ uMset

In case (4), the regular update produced is created by aggregating the partial
updates in the second step, assuming that the location currently contains the value
of the regular update from the first step. The following rule formally defines the
semantics of this aggregation.

Set Plugin

SetAggregateLocation(loc, uMset1, uMset2) ≡
return resultantUpdate in

local newSet [newSet := {}] in
seq
forall e ∈ enumerate(getLocRegularUpdateValue(uMset1))

if 6 ∃〈loc, e, setRemoveAction〉 ∈ uMset2 do
add e to newSet

forall 〈loc, v, setAddAction〉 ∈ uMset2 do
add v to newSet

next
resultantUpdate := 〈loc, setElement(newSet), updateAction〉

where
getLocRegularUpdateValue(uMset) ≡ v s.t. 〈loc, v, a〉 ∈ uMset ∧ a = updateAction

100

5. CoreASM: The Plugins CoreASM Documentation

Partial update instructions occurring in a sequence may nullify one another. In
case (5), we remove the updates that fall into one of these categories:

• For any location, addition of an element e in the first step followed by the
removal of the same element e in the second step, clearly causes no change to
the resulting Set element. Update instructions containing both these opposing
actions on the same location are removed from the composed update multiset.

• For any location, removal of an element e in the first step is neutralized by the
addition of the same element e in the second step. Thus, such removal update
instructions should be excluded from the composed update multiset.

The following rule formally defines the composition behavior in case (5):

Set Plugin

EradicateConflictingSetUpdates(loc, uMset1, uMset2) ≡
return remainingUpdates in

seq
remainingUpdates := {||}

next
forall v ∈ locValues do

if locValAct(uMset1, v, setAddAction) ∧ locValAct(uMset2, v, setRemoveAction) then
skip

else if locValAct(uMset1, v, setRemoveAction) ∧ locValAct(uMset2, v, setAddAction) then
forall ui ∈ {|〈loc, v, setAddAction〉 ∈ uMset2|} do

add ui to remainingUpdates
else

forall ui ∈ getAllLocValUpdates do
add ui to remainingUpdates

where
locValues ≡ {v1 | 〈loc, v1, a1〉 ∈ uMset1} ∪ {v2 | 〈loc, v2, a2〉 ∈ uMset2}
locValAct(uMset, v, a) ≡ ∃〈loc, v, a〉 ∈ uMset
getAllLocValUpdates ≡ {〈loc, v, a1〉 ∈ uMset1} ∪ {〈loc, v, a2〉 ∈ uMset2}

5.3.3 The Bag Plugin

The Bag plugin extends the CoreASM language with the background of finite Bags
or multisets. The background of Bag elements (or Multiset elements) is defined by
bagBack ∈ BackgroundElement; we have

name(bagBack) = “BAG”

newValue(bagBack) = emptyBag

We model Bag elements as values of a domain BagElement. The following func-
tions define the interface of Bag elements and provide a mapping between Bag ele-
ments and the multisets of elements they represent:

101

5. CoreASM: The Plugins CoreASM Documentation

• bagElement : Multiset(Element) 7→ BagElement

for every multiset of elements, returns a bag element representation of that
multiset.

• bagElementf : (Element 7→ N) 7→ BagElement

for every mapping of elements to positive integers (multiplicity function), re-
turns a bag element with the given multiplicity function.

• bagValue : BagElement 7→ Multiset(Element)

for every bag element, returns the multiset of elements that the bag represents.

• bagMultiplicity : BagElement 7→ (Element 7→ N)

for every bag element, returns the multiplicity function of the multiset it rep-
resents. The value of this function is zero for all the elements that are not in
the bag.

• bagDomain : BagElement 7→ Set(Element)

for every bag element, returns the set of all the elements that are in the bag.

For all b ∈ BagElement we have:

• bkg(b) := “Bag”.

• ∀b′ ∈ BagElement equalBag(b, b′) ≡
bagDomain(b) = bagDomain(b′)
∧ ∀e ∈ bagDomain(b) bagMultiplicity(b)(e) = bagMultiplicity(b′)(e)

• enumerable(b)
All bag elements are enumerable.

• enumerateBag(b) = bagValue(b).

• b ∈ FunctionElement

All bag elements also behave as functions.

• classfe(b) = static

• ∀e ∈ Element valuefe(b, 〈e〉) ≡ numberElement(bagMultiplicity(b)(e))

• b ∈ AbstractMapElement

All bag elements are abstract map elements.

• getMapBag(b) = m | ∀e ∈ bagDomain(b) m(e) = valuefe(b, 〈e〉)

To facilitate partial updates of Bag elements, the add/to-rule and remove/from-
rule are supported by the Bag plugin (see Section 5.3.1). We have

∀b ∈ BagElement isModifiableCollection(b)

102

5. CoreASM: The Plugins CoreASM Documentation

Since incremental updates on bags do not come with much constraints as for sets (due
to multiplicity of elements), instead of using different update actions for adding/removing
elements to/from bags, Bag plugin uses a more general action, bagUpdateAction, with
special values (elements) that also include the actions of adding, removing, or an or-
dered combination of adding or removing of elements; the latter is useful in composing
incremental updates on bags:

computeAddUpdateBag(loc, value) ≡
{|〈loc, bagUpdateElement(“add”, value), bagUpdateAction〉|}

computeRemoveUpdateBag(loc, value) ≡
{|〈loc, bagUpdateElement(“remove”, value), bagUpdateAction〉|}

Expression Forms

The interpreter is extended with the following Bag enumeration forms:

Bag Plugin

L<< >> M → [[pos]] := (undef, undef, emptyBag)

L<< λ1
e
? 1, . . . ,

λn
e
? n >> M → choose i ∈ [1..n] with ¬evaluated(λi)

pos := λi
ifnone

let m = {|value(λi) | i ∈ [1..n]|} in
[[pos]] := (undef, undef, bagElement(m))

Various forms of bag comprehension similar in syntax and semantics to those of
sets (see Section 5.3.2) is also introduced by the Bag plugin.

Operators

Bag plugin provides the following four operators on Bag elements: ∩ (multiset inter-
section), \ (multiset difference), ∪ (multiset union), and + (multiset join) as defined
below:

Bag Plugin

L α
e
? ∩ β

e
? M

[675]
→ choose λ ∈ {α, β} with ¬evaluated(λ)

pos := λ
ifnone

let l = value(α), r = value(β) in
if BagElement(l) ∧BagElement(r) then

let f = {x 7→ y | x = (bagDomain(l) ∩ bagDomain(r))
∧ y = min(bagValue(l)(x), bagValue(r)(x))} in

[[pos]] := (undef, undef, bagElementf (f))
else

if ∀x ∈ {l, r} BagElement(x) ∨ x = undefe then
[[pos]] := (undef, undef, undefe)

103

5. CoreASM: The Plugins CoreASM Documentation

L α
e
? \β

e
? M

[650]
→ choose λ ∈ {α, β} with ¬evaluated(λ)

pos := λ
ifnone

let l = value(α), r = value(β) in
if BagElement(l) ∧BagElement(r) then

let f = {x 7→ y | x ∈ bagDomain(l) ∪ bagDomain(r)
∧ y = max(0, bagValue(l)(x)− bagValue(r)(x))} in

[[pos]] := (undef, undef, bagElementf (f))
else

if ∀x ∈ {l, r} BagElement(x) ∨ x = undefe then
[[pos]] := (undef, undef, undefe)

L α
e
? ∪ β

e
? M

[650]
→ choose λ ∈ {α, β} with ¬evaluated(λ)

pos := λ
ifnone

let l = value(α), r = value(β) in
if BagElement(l) ∧BagElement(r) then

let f = {x 7→ y | x ∈ bagDomain(l) ∪ bagDomain(r)
∧ y = max(bagValue(l)(x), bagValue(r)(x))} in

[[pos]] := (undef, undef, bagElementf (f))
else

if ∀x ∈ {l, r} BagElement(x) ∨ x = undefe then
[[pos]] := (undef, undef, undefe)

L α
e
? + β

e
? M

[750]
→ choose λ ∈ {α, β} with ¬evaluated(λ)

pos := λ
ifnone

let l = value(α), r = value(β) in
if BagElement(l) ∧BagElement(r) then

let f = {x 7→ y | x ∈ bagDomain(l) ∪ bagDomain(r)
∧ y = bagValue(l)(x) + bagValue(r)(x)} in

[[pos]] := (undef, undef, bagElementf (f))
else

if ∀x ∈ {l, r} BagElement(x) ∨ x = undefe then
[[pos]] := (undef, undef, undefe)

5.3.4 The List Plugin

The List plugin extends the CoreASM language providing the background of lists
(sequence of elements) with corresponding operators and rule forms. We denote the
background of List elements by listBkg ∈ BackgroundElement; we have

name(listBkg) = “LIST”

newValue(listBkg) = emptyList

List elements are values of the domain ListElement. The following functions
define the interface of list elements and provide a mapping between List elements
and the sequence of elements they represent.

104

5. CoreASM: The Plugins CoreASM Documentation

• listElement : List(Element) 7→ ListElement

returns a list element representing the given sequence of elements.

• listValue : ListElement 7→ List(Element)

returns the sequence of elements that are represented by the given list element,

• headle : ListElement 7→ Element

lastle : ListElement 7→ Element

return the first and last elements of the list, or undefe if the list is empty.

• taille : ListElement 7→ ListElement

returns the tail of the list excluding its first element, or an empty list if the list
has only one element.

• consle : Element × ListElement 7→ ListElement

consle(e, l) constructs a new list with e as its head and l as its tail.

• concatle : ListElement × ListElement 7→ ListElement

concatle(l1, l2) ≡ consle(headle(l1), concatle(taille(l1), l2))

• listItemle : ListElement × N 7→ Element

listItemle(l, i) ≡ listValue(l)(i)

• takele : ListElement × N 7→ ListElement

takele(list, i) returns a list element containing the first i elements of list as a
list element. The first element of the list is at index 1.

• drople : ListElement × N 7→ ListElement

drople(list, i) returns a list element containing what is left after dropping the
first i elements of the list list. The first element of the list is at index 1.

For every l ∈ ListElement, we have

• bkg(l) = “List”

• ∀l′ ∈ ListElement equalList(l, l′) ≡ listValue(l) = listValue(l′)

• enumerable(l)
All list elements are enumerable.

• enumerateList(l) = listValue(l).

• l ∈ FunctionElement

All list elements also behave as functions.

• classfe(l) = static

• ∀ne ∈ NumberElement valuefe(l, 〈ne〉) ≡{
listItemle(l,numericValue(ne)), if listItemle(l,numericValue(ne)) 6= undef;
undefe, otherwise.

105

5. CoreASM: The Plugins CoreASM Documentation

• l ∈ AbstractMapElement

All List elements are abstract map elements.

• getMapList(l) = m | ∀e ∈ [1..|enumerateList(l)|] m(e) = valuefe(l, 〈e〉)

Every list element is considered to be a modifiable collection, so we have

∀l ∈ ListElement isModifiableCollection(l)

However, List plugin does not offer partial updates on List elements; hence, adding
and removing elements to and from List elements cannot be done incrementally.
As a result, computeAddUpdateList and computeRemoveUpdateList on lists return an
update instruction with a regular update action defined as:

computeAddUpdateList(loc, value) ≡
{|〈loc, concatle(getValue(loc), listElement(〈value〉)), updateAction〉|}

computeRemoveUpdateList(loc, value) ≡{
{|〈loc, concatle(left, right), updateAction〉|}, if |indices(getValue(loc))| > 0;
{||}, otherwise.

where

indices(le) = {j | j ∈ [1..|listValue(le)|] ∧ listValue(le)(j) = value}
left = takele(getValue(loc),m− 1)
right = drople(getValue(loc),m)
m = min(indices(getValue(loc))

Expression Forms

The List plugin extends the interpreter to support List comprehension:

List Plugin

L [] M → let newList = newV alue(listBkg) in
[[pos]] := (undef, undef, newList)

L [λ1
e
? 1, . . . ,

λn
e
? n] M → choose i ∈ [1..n] with ¬evaluated(λi)

pos := λi
ifnone

let l = 〈value(λ1), . . . , value(λn)〉 in
[[pos]] := (undef, undef, listElement(l))

To facilitate locating a specific element in a List element, the List plugin also
offers the following expression form that searches a List element for the occurrence
of an element and returns an index to the element of interest. If there is no such
element in the list, the result will be undefe. If the element appears more than once
in the list, one index will be returned non-deterministically.

106

5. CoreASM: The Plugins CoreASM Documentation

List Plugin : Search

L indexof α
e
e in β

e
e M → choose τ ∈ {α, β} with ¬evaluated(τ)

pos := τ
ifnone

let e = value(α), v = value(β) in
if v ∈ ListElement then

let l = listValue(v) in
choose i ∈ [1..|l|] with l(i) = e do

[[pos]] := (undef, undef,numberElement(i))
ifnone

[[pos]] := (undef, undef, undefe)

In addition, the following expression forms, return an index to the first and the
last occurrence of an element in a list.

List Plugin : Search

L first indexof α
e
e in β

e
e M →

choose τ ∈ {α, β} with ¬evaluated(τ)
pos := τ

ifnone
let e = value(α), v = value(β) in

if v ∈ ListElement then
let l = listValue(v) in

let indices = {j | j ∈ [1..|l|] ∧ l(j) = e} in
if |indices| > 0 then

[[pos]] := (undef, undef,numberElement(min(indices)))
else

[[pos]] := (undef, undef, undefe)

L last indexof α
e
e in β

e
e M →

// Similar to above; replace min(indices) by max(indices).

Operators

The List plugin provides the following concatenation operator on List elements:

List Plugin : Concatenation

L α
e
? + β

e
? M

[750]
→ choose λ ∈ {α, β} with ¬evaluated(λ)

pos := λ
ifnone

let l = value(α), r = value(β) in
if l ∈ ListElement ∧ r ∈ ListElement then

[[pos]] := (undef, undef, concatle(l, r))
else

if ∀x ∈ {l, r} x ∈ ListElement ∨ x = undefe then
[[pos]] := (undef, undef, undefe)

107

5. CoreASM: The Plugins CoreASM Documentation

Rule Forms

The List plugin extends the interpreter of the engine to provide the following rule
forms facilitating shifting of List elements one index to the left or right. In shift left,
the first element of the list is dropped into the given location. In shift right, the last
element of the list is dropped into the given location.

List Plugin

L shift leftα
e

intoβ
e
l M →

choose τ ∈ {α, β} with ¬evaluated(τ)
pos := τ

ifnone
if value(α) ∈ ListElement then

if loc(β) 6= undef then
let updates = {|〈loc(β), headle(value(α)), updateAction〉,

〈loc(α), taille(value(α)), updateAction〉|}
[[pos]] := (undef, updates, undef)

else
Error(‘Cannot shift list to a non-location.’)

L shift rightα
e

intoβ
e
l M →

choose τ ∈ {α, β} with ¬evaluated(τ)
pos := τ

ifnone
if value(α) ∈ ListElement then

if loc(β) 6= undef then
let le = value(α), l = listValue(le) in

if |l| ≤ 1 then
let updates = {|〈loc(β), lastle(le), updateAction〉,

〈loc(α), emptyList, updateAction〉|}
[[pos]] := (undef, updates, undef)

else
let updates = {|〈loc(β), lastle(le), updateAction〉,

〈loc(α), takele(le, |l| − 1), updateAction〉|}
[[pos]] := (undef, updates, undef)

else
Error(‘Cannot shift list to a non-location.’)

Functions

The List plugin also extends the vocabulary of the engine to provide the following
functions defined on List elements:

• head: LIST -> ELEMENT
valuefe(headFunction, 〈l〉) = headle(l)

• last: LIST -> ELEMENT
valuefe(lastFunction, 〈l〉) = lastle(l)

108

5. CoreASM: The Plugins CoreASM Documentation

• tail: LIST -> LIST
valuefe(tailFunction, 〈l〉) = taille(l)

• cons: ELEMENT * LIST -> LIST
valuefe(consFunction, 〈e, l〉) = consle(e, l)

• nth: LIST * NUMBER -> ELEMENT
valuefe(nthFunction, 〈l, i〉) = listItemle(l,numricValue(i))

• take: LIST * NUMBER -> LIST
valuefe(takeFunction, 〈l, i〉) = takele(l,numricValue(i))

• drop: LIST * NUMBER -> LIST
valuefe(dropFunction, 〈l, i〉) = drople(l,numricValue(i))

• reverse: LIST -> LIST
valuefe(reverseFunction, 〈l〉) ={

emptyList, if |listValue(l)| = 0;
reverse(l), otherwise.

where
reverse(l) ≡ l′ s.t. ∀i∈[1..|listValue(l)|] listItemle(l′, i) = listItemle(l, |listValue(l)|−
i+ 1)

• indexes: LIST -> LIST
valuefe(indexesFunction, 〈l〉) = listElement(〈1, . . . , |listValue(l)|〉)

• indices: LIST -> LIST
same as indexes.

• setnth: LIST * NUMBER * ELEMENT -> LIST
valuefe(setnthFunction, 〈l, n, e〉) ={

l′ s.t. listItemle(l′,numericValue(n)) = e, if 1 ≤ n ≤ |listValue(l)|;
undefe, otherwise.

5.3.5 The Queue Plugin

The Queue plugin does not provide any new type domain but it provides two rule
forms that operate on Lists elements as queues: enqueue and dequeue. The former
adds an element to end of the list, and the latter removes an element from the head
of the list. We present here a formal definition of these two rule forms:

109

5. CoreASM: The Plugins CoreASM Documentation

Queue Plugin

L enqueueα
e
e intoβ

e
M → pos := β

L enqueueα
e
e intoβl M → if value(β) ∈ ListElement then

pos := α
else

Error(‘Cannot enqueue into a non-list.’)

L enqueueαv intoβl M → let newList = concatle(value(β), listElement(〈v〉)) in
[[pos]] := (undef, {|〈l,newList, updateAction〉|}, undef)

L dequeueα
e
l fromβ

e
l M → pos := β

L dequeueα
e
l fromβl2 M → if value(β) ∈ ListElement then

if |listValue(value(β))| > 0 then
pos := α

else
Error(‘Cannot dequeue from an empty queue.’)

else
Error(‘Cannot dequeue into a non-list.’)

L dequeueαl1 fromβl2 M → let u1 = 〈l1, headle(value(β)), updateAction〉,
u2 = 〈l2, taille(value(β)), updateAction〉 in

[[pos]] := (undef, {|u1, u2|}, undef)

5.3.6 The Stack Plugin

Similar to the Queue plugin introduced above, the Stack plugin also does not provide
any new type domain but it provides two rule forms that operate on Lists as stacks:
push and pop. The former one, pushes an element at the head of a list and the
latter one removes the first element of the list.

Stack Plugin

L pushα
e
e intoβ

e
M → pos := β

L pushα
e
e intoβl M → if value(β) ∈ ListElement then

pos := α
else

Error(‘Cannot push into a non-list.’)

L pushαv intoβl M → let newList = consle(v, value(β)) in
[[pos]] := (undef, {|〈l,newList, updateAction〉|}, undef)

110

5. CoreASM: The Plugins CoreASM Documentation

L popα
e
l fromβ

e
l M → pos := β

L popα
e
l fromβl2 M → if value(β) ∈ ListElement then

if |listValue(value(β))| > 0 then
pos := α

else
Error(‘Cannot pop from an empty stack.’)

else
Error(‘Cannot pop from a non-list.’)

L popαl1 fromβl2 M → let u1 = 〈l1, headle(v), updateAction〉,
u2 = 〈l2, taille(v), updateAction〉 in

[[pos]] := (undef, {|u1, u2|}, undef)

5.3.7 The Map Plugin

The Map plugin extends CoreASM by providing the background of Map elements and
the corresponding operators and rule forms defined on them. The background of map
elements is denoted by mapBkg ∈ BackgroundElement; we have

name(mapBkg) = “MAP”

newValue(mapBkg) = emptyMap

Map elements are values of the domain MapElement. The following functions
define the interface of map elements and provide a mapping between Map elements
to the unary functions or sets of pairs they represent:

• mapElement : (Element 7→ Element) 7→ MapElement

returns a map element representing the given mapping of elements to elements.

• mapElementFromPairs : Set(ListElement) 7→ MapElement

if the given set consists of pairs of elements (lists of size two) of the form [ki, vi]
such that ∀[ki, vi] 6 ∃[kj , vj] ki = kj ∧ vi 6= vj , this function returns a map
element representing a mapping of kis to vis; otherwise, returns undefe.

• mapValue : MapElement 7→ (Element 7→ Element)

returns the mapping (from elements to elements) represented by the given map
element.

• keyset : MapElement 7→ Set(Element)

∀m ∈ MapElement, keyset(m) ≡ domain(mapValue(m))

• valueset : MapElement 7→ Set(Element)

∀m ∈ MapElement, valueset(m) ≡ range(mapValue(m))

For every m ∈ MapElement, we have

111

5. CoreASM: The Plugins CoreASM Documentation

• bkg(m) = “Map”

• ∀m′ ∈ MapElement equalMap(m,m′) ≡
keyset(m) = keyset(m′)∧∀e ∈ keyset(m) mapValue(m′)(e) = mapValue(m)(e)

• enumerable(m)
All map elements are enumerable.

• enumerateMap(m) = {listElement(〈k, v〉) | k ∈ keyset(m)∧v = mapValue(m)(k)}.

• m ∈ FunctionElement

All map elements also behave as functions.

• classfe(m) = static

• ∀e ∈ Element valuefe(m, 〈e〉) ≡{
mapValue(m)(e), if mapValue(m)(e) 6= undef;
undefe, otherwise.

• m ∈ AbstractMapElement

All map elements are abstract map elements.

• getMapMap(m) = mapValue(m)

Every map element is considered to be a modifiable collection, so we have

∀m ∈ MapElement isModifiableCollection(m)

However, Map plugin does not offer partial updates on Map elements; hence, adding
and removing elements to and from Map elements cannot be done incrementally. As
a result, computeAddUpdateMap and computeRemoveUpdateMap on maps return an
update instruction with a regular update action defined as:

computeAddUpdateMap(loc, value) ≡{
{|〈loc,maploc ⊕mapval, updateAction〉|} if AbstractMapElement(value);
undefe, otherwise.

computeRemoveUpdateList(loc, value) ≡
{|〈loc,maploc 	mapval, updateAction〉|} if MapElement(value);
{|〈loc,maploc ⊗ enumerate(value), upAdateAction〉|}, if ¬MapElement(value)

∧ enumerable(value);
{|〈loc,maploc ⊗ {value}, updateAction〉|}, otherwise.

112

5. CoreASM: The Plugins CoreASM Documentation

where4

maploc = mapElement(mapValue(getValue(loc))
mapval = getMapbkg(value)(value)

m1 ⊕m2 = m3 | ∀e ∈ Element m3(e) =
{
m2(e), if m2(e) 6= undef;
m1(e), otherwise.

m1 	m2 = m3 | ∀e ∈ Element m3(e) =
{
m1(e), if m1(e) 6= m2(e);
undef, otherwise.

m⊗ s = m′ | ∀e ∈ Element m′(e) =
{
m(e), if e 6∈ s;
undef, otherwise.

Expression Forms

The Map plugin extends the interpreter of the CoreASM engine with the following
map comprehension forms:

Map Plugin

L {->} M → [[pos]] := (undef, undef, emptyMap)

L {λ1
e
? -> λ2

e
? , . . . , λ2n−1

e
? -> λ2n

e
? } M →

choose i ∈ [1..2n] with ¬evaluated(λi)
pos := λi

ifnone
let pairs = {listElement(〈λ2i−1, λ2i〉) | i ∈ [1..n]} in

[[pos]] := (undef, undef,mapElementFromPairs(pairs))

Functions

The vocabulary of the CoreASM engine is also extended with the following two func-
tions mapping Map elements to sets of pairs and vice versa:

• toMap: ELEMENT -> MAP
valuefe(toMapFunction, 〈e〉) ={

mapElementFromPairs({x | x ∈ enumerate(e)}), if enumerable(e);
undefe, otherwise.

• mapToPairs: MAP -> SET
valuefe(mapToPairsFunction, 〈m〉) ={

setElement(enumerate(m)), if m ∈ MapElement;
undefe, otherwise.

4Here, the definitions of ⊕, 	, and ⊗ are local for these formula and should not be mistaken by
other definitions throughout this document.

113

5. CoreASM: The Plugins CoreASM Documentation

5.4 Auxiliary Plugins

In addition to the plugins addressed so far, CoreASM comes with a number of auxiliary
plugins that extend the kernel of CoreASM with concepts, constructs and function-
alities that are particularly useful in execution and analysis of specifications. Here,
we present those auxiliary plugins that are available as part of the current edition of
CoreASM.

5.4.1 The Signature Plugin

The CoreASM language is in principle an untyped language.5 While a typeless lan-
guage is desirable for writing initial specifications, defining the types of values and
the signatures of functions used in more concrete specifications often add useful se-
mantic information. Such information not only can improve the understandability of
the specification and reduce specification errors, but it also plays an essential role in
the verification process.

The Signature plugin extends the CoreASM language with syntactic patterns to
declare universes, enumerated backgrounds, and function signatures. The correspond-
ing nodes in the parse tree are processed by the Signature plugin when the CoreASM
engine is initializing the Abstract Storage (see Initializing State in Figure 3.5). Dur-
ing this phase, the engine queries plugins for their contributions to the vocabulary
of the state (see definition of InitAbstractStorage in Section 4.5). When the Signa-
ture plugin is asked for its vocabulary contribution, it processes the parse tree and
provides the engine with a list of universes, backgrounds and functions declared in
the specification. Thus, the interpretation of Signature plugin declarations directly
modifies the initial state of the simulated machine.

Functions

To declare functions, the Signature plugin extends the CoreASM language with the
following syntactic patterns:

Signature Plugin

L function x : -> xr M → CreateFunction(x, controlled, 〈〉, xr)
L function controlled x : -> xr M → CreateFunction(x, controlled, 〈〉, xr)
L function static x : -> xr M → CreateFunction(x, static, 〈〉, xr)

L function x : xd1* . . . * xdn
-> xr M → CreateFunction(x, controlled, 〈xd1 , . . . , xdn

〉, xr)
L function controlled x : xd1* . . . * xdn

-> xr M →
CreateFunction(x, controlled, 〈xd1 , . . . , xdn〉, xr)

L function static x : xd1* . . . * xdn
-> xr M → CreateFunction(x, static, 〈xd1 , . . . , xdn

〉, xr)

5This section is based on Section 5.2 of George Ma’s M.Sc. thesis [62] and Section 3.1 of our
previously published paper on “Model Checking CoreASM Specifications” [37].

114

5. CoreASM: The Plugins CoreASM Documentation

The interpretation of function declaration patterns is defined by the CreateFunc-
tion rule, which creates a new function with a specified name, class, and signature.

Signature Plugin

CreateFunction(name, functionClass, domain, range) ≡
let f = new(FunctionElement) in

classfe(f) := functionClass
let s = new(Signature) in

sigDomain(s) := domain
sigRange(s) := range
signature(f) := s
add (name, f) to pluginFunctions(signatureP lugin)

One can also specify the initial value(s) of a function in the function declaration by
including an initialization expression at the end of the declaration. The initialization
expression may be a basic expression, for nullary functions, or a function expression,
for n-ary functions. Before the function is created, the expression giving its initial
value is evaluated. In the following patterns xc is either static or controlled.

Signature Plugin

L function xc x : -> xr initially α
e
e M → evaluate(α)

L function xc x : xd1* . . . * xdn
-> xr initially α

e
e M → evaluate(α)

L function xc x : -> xr initially αv M → CreateFunctionWithInitValue(x, xc, 〈〉, xr, v)
L function xc x : xd1* . . . * xdn-> xr initially αv M →

CreateFunctionWithInitValue(x, xc, 〈xd1 , . . . , xdn
〉, xr, v)

CreateFunctionWithInitValue(name, functionClass, domain, range, initialValue) ≡
let f = new(FunctionElement) in

classfe(f) := functionClass
let s = new(Signature) in

sigDomain(s) := domain
sigRange(s) := range
signature(f) := s
if initialV alue 6= undef then

SetFunctionValue(f, domain, initialV alue)
add (name, f) to pluginFunctions(signatureP lugin)

The SetFunctionValue rule sets the initial value of a function. If the function is
not nullary and the specified value is a Maplement, each key in the map is viewed
as an argument list and the value of the function for those arguments is set to the
corresponding map value.

Universes and Enumerations

The Signature plugin also extends the CoreASM language with patterns for declara-
tion of universes:

115

5. CoreASM: The Plugins CoreASM Documentation

Signature Plugin

L universe x M → CreateUniverse(x, {})
L universe x = {xe1 , . . . , xen} M → CreateUniverse(x, {xe1 , . . . , xen})

The second pattern allows the specification writer to declare a universe along with
a set of named initial member elements. Of course, a declared universe can still be
extended using standard methods, namely by using the extend rule, which imports
a new element to a universe, or by setting the value of the corresponding universe
membership predicate to true for a given element.

The universe declaration patterns are interpreted by the CreateUniverse rule,
which creates a new universe with the specified name. If initial members are specified,
for each member a static function with the given name is also created.

Signature Plugin

CreateUniverse(name,members) ≡
let u = new(UniverseElement) in

add (name, u) to pluginUniverses(signatureP lugin)
forall elementName ∈ members do

let e = new(Element) in
memberue(u, e) := true
let f = new(FunctionElement) in

add (elementName, f) to pluginFunctions(signatureP lugin)
classfe(f) := static
SetValuefe(f, 〈〉, e)

To declare enumerated backgrounds, the Signature plugin provides the following
pattern:

Signature Plugin

L enum x = {xe1 , . . . , xen
} M → CreateEnumeration(x, {xe1 , . . . , xen

})

The CreateEnumeration rule is similar in spirit to CreateUniverse, as enumerable
backgrounds are analogous to static universes. The rule is defined as follows:

116

5. CoreASM: The Plugins CoreASM Documentation

Signature Plugin

CreateEnumeration(name,members) ≡
let b = new(EnumerationBackground) in

add (name, b) to pluginBackgrounds(signatureP lugin)
forall elementName ∈ members do

let e = new(Element) in
bkg(e) := name
add e to enumMembers(b)
let f = new(FunctionElement) in

add (elementName, f) to pluginFunctions(signatureP lugin)
classfe(f) := static
SetValuefe(f, 〈〉, e)

We model background elements that are defined using the Signature plugin with
values of the domain EnumerationBackground. The following function, defined on
Enumeration Background elements, holds the set of elements each such background
represents:

enumMembers : EnumerationBackground 7→ Set(Element)

For all eb ∈ EnumerationBackground, we have

• enumerable(eb)
All enumeration background elements are enumerable.

• enumerateEnumerationBackground(eb) ≡ enumMembers(eb)

Type Checking on Updates

In order to offer runtime type checking on updates, the Signature plugin extends the
control flow of the CoreASM engine by registering for the extension points proceeding
the aggregation of updates (see Figure 3.8). We have,

∀em ∈ EngineMode, isPluginRegisteredForTransition(signaturePlugin,Aggregation, em)
pluginExtensionRule(signaturePlugin) = @CheckUpdateSetForTypes

As a result of this registration, when the control flow of the engine moves from
the Aggregation control state to either Step Succeeded or Step Failed, the engine calls
the CheckUpdateSetForTypes rule of the Signature plugin. This rule goes through the
update set and for every update checks the arguments and the value of the update
against the signature of the function it is updating and reports the inconsistencies.
The following rules formally define this process.

117

5. CoreASM: The Plugins CoreASM Documentation

Signature Plugin

CheckUpdateSetForTypes ≡
if engineProperties(“TypeChecking”) = “strict” then

forall 〈loc, val, act〉 ∈ updateSet do
let f = stateFunction(state,namelc(loc)), sigf = signature(f) in

if sigf 6= undef then
CheckArguments(argslc(loc), sigDomain(sigf))
CheckValue(val, sigRange(sigf))

CheckArguments(args, domain) ≡
if |args| 6= |domain| then

Error(‘Number of arguments passed do not match the domain of the function.’)
else

forall i ∈ [1..|domain|] do
let universe = stateUniverse(state, domain(i)) in

if ¬memberue(universe, args(i)) then
Error(‘Argument does not match the domain of the function.’)

CheckValue(v, range) ≡
let universe = stateUniverse(state, range) in

if ¬memberue(universe, v) then
Error(‘Update value does not match the range of the function.’)

5.4.2 The Scheduling Policies Plugin

The Scheduling Policies plugin provides two basic policies for scheduling of agents
by the Scheduler. In any CoreASM specification, the particular scheduling policy
to be used can be configured using the CoreASM engine’s properties (see also Ap-
pendix A.4):

• pluginSchedulingPolicy(SchedulingPoliciesPlugin) ≡
allFirstPolicy, if engineProperties(“SchedulingPolicies.Policy”) = “allfirst”;
oneByOnePolicy, if engineProperties(“SchedulingPolicies.Policy”) = “onebyone”;
undef, otherwise.

• newScheduleRule(allFirstPolicy) ≡ @NewScheduleallfirst

• newScheduleRule(oneByOnePolicy) ≡ @NewScheduleonebyone

All-First Policy

The all-first scheduling policy first tries to schedule all the given agents elements
together in one batch. Alternative options will be non-deterministic subsets of the
given sets of elements. Applied to the scheduling of agents, this policy first suggests
the execution of all the agents together and if that fails, it offers various subsets of
agents as alternative options.

118

5. CoreASM: The Plugins CoreASM Documentation

Scheduling Policies Plugin

NewScheduleallfirst(group, set) ≡
result := cons(set, 〈s | s ∈ P(set)\{set}〉)

One-by-One Policy

The one-by-one scheduling policy provides a schedule that comprises of a series of
non-deterministically selected single elements. The policy, however, tries to maintain
a “fair” set of schedules over a group by keeping a history of the already sched-
uled elements and trying to avoid re-scheduling of those elements as long as other
non-scheduled elements are still available. Applied to the scheduling of agents in a
CoreASM simulation, this policy results in a sequential execution of agents.

Scheduling Policies Plugin

NewScheduleonebyone(group, set) ≡
if group 6= undef then

if scheduleHistoryobo(group) = undef ∨ set\scheduleHistoryobo(group) = ∅ then
choose e ∈ set do

result := 〈e〉
scheduleHistoryobo(group) := {e}

else
choose e ∈ set with e 6∈ scheduleHistoryobo(group) do

result := 〈e〉
add e to scheduleHistoryobo(group)

else
choose e ∈ set do

result := 〈e〉

5.4.3 IO Plugin

In an open-system view towards modeling, the system operates in a given environ-
ment. The environment affects system runs through actions or events and the sys-
tem can as well affect the environment by its output. In abstract state machines,
the interaction between the system (the machine) and the environment is captured
through monitored (also called in), shared, and out functions. Monitored functions
are controlled only by the environment; they are channels through which the machine
observes the environment. In a given state, the values of all monitored functions are
determined (and do not change) [20]. Out functions are updated only by the machine
and they are read-only for the environment. Shared functions are both controlled and
read by the machine and the environment.

The IO Plugin utilizes this machine-environment interaction mechanism of ASM
and provides two simple channels of communication between a CoreASM machine and
its environment: a print rule that outputs values to the environment, and an input
function to get values from the environment. In both cases, textual representations
of values are used.

119

5. CoreASM: The Plugins CoreASM Documentation

Functions

To facilitate input from the environment, the IO plugin introduces the following
monitored function:

• input: STRING -> STRING
classfe(inputFunction) = monitored
For any given value as its argument, this input function queries an input value
from the environment (presenting the argument as a prompt or key to the input
value). Since this is a monitored function, once its value is set for a certain
argument (i.e., message) in a computation step, it will not change before the
step is completed.

Rule Forms

To provide an output channel for CoreASM specifications, the IO plugin extends
the state of the simulated machine by introducing an output function (output: ->
String) which in any given step holds the output of the previous step. Output
values are assigned to output by print rules. Every print rule generates a special
update instruction with printAction to append the a String element to the value of
the output function. At the end of each computation step, these special updates will
be aggregated into one single update to output function.

IO Plugin

L print α
e
e M → pos := α

L print αv M → let l = (“output”, 〈〉) in
[[pos]] := (undef, {|〈l, stringElement(v), printAction〉|}, undef)

Aggregation of Output Messages

In the aggregation phase of every step, print update instructions need to be aggre-
gated into a single regular update to the output function. Since the print values are
String elements (see Section 5.2.3), and there is no execution order on the print rules
that generated these updates, the aggregation of these values can be achieved by
concatenation of the values into a single String element in a non-deterministic order.
The IO plugin provides the semantics of such aggregation as follows.

120

5. CoreASM: The Plugins CoreASM Documentation

IO Plugin

AggregateIO(uMset) ≡
seq

result := emptyString
next

if regularUpdatesExist then
HandleInconsistentAggregation(l, uMset, ioPlugin)

else
foreach u ∈ printActionUpdates do

result := concatString(result, uiValue(u))
aggStatus(u, ioPlugin) := successful

where
regularUpdatesExist ≡ ∃u ∈ uMset, uiAction(u) = updateAction ∧ uiLoc(u) = (“output”, 〈〉)
printActionUpdates ≡ {u | u ∈ uMset ∧ uiAction(u) = printAction ∧ uiLoc(u) = (“output”, 〈〉)}

Composition of Output Messages

In order to maintain the order of output values in a sequential composition of print
updates, the composition algorithm provided by the IO plugin aggregates the output
values of the first and second step and concatenates them together into a single print
update instruction on the output function. The the output values of the first step
are only considered if the second step does not have a regular update on the output
location.

IO Plugin

ComposeIO(uMset1, uMset2) ≡
local outputStr [outputStr := emptyString] in

seq
if ¬regularUpdatesExist(uMset2) then

foreach u ∈ printUpdates(uMset1) do
outputStr := concatString(result, uiValue(u))

seq
foreach u ∈ printUpdates(uMset2) do

outputStr := concatString(result, uiValue(u))
next
result := 〈(“output”, 〈〉), outputStr, printAction〉

where
printUpdates(mset) ≡ {u | u ∈ mset ∧ uiLoc(u) = (“output”, 〈〉) ∧ uiAction(u) = printAction}
regularUpdatesExist(mset) ≡ ∃u ∈ mset, uiAction(u) = updateAction ∧ uiLoc(u) = (“output”, 〈〉)

121

5. CoreASM: The Plugins CoreASM Documentation

5.4.4 Step Plugin

The Step Plugin offers a rule constructs allowing the sequential execution of ASM
rules that span over more than one computation step. The idea is to introduce a rule
construct of the form

R1 step R2

evaluation of which takes two computation steps: in the first step, the result of
evaluation is equivalent to evaluating R1 and in the second step the result is that
of evaluating R2. A computation step of an ASM machine M in state AM and
program PM is achieved by evaluating PM into a set of updates that will be applied
to AM . The introduction of the step construct is faithful to this definition and is a
conservative extension to ASMs, meaning that it does not alter the evaluation of PM .
The evaluation of R1 step R2 results in a set of updates, alternatively the updates
of R1 and R2.6

In order to define a generic and compositive semantics for this constructs, we first
define the following two notions.

1. We define a compound global control state for machine M in every state AM

as a set of local control states. The current value of the global control state of
M in any state AM is kept as the value of a nullary function ctl state in AM .
The idea is that there can be parallel control flows in a single machine M that
advance in every computation step. This view of defining the contorl sate of
M as a set of local control state lifts the limitation we have in Control State
ASMs that disallows parallel control branches.

2. We define a unique control state identifier at runtime (evaluation time) for every
rule Ri in any step construct that takes into account the macro-rule call path
to Ri from PM (in case Ri is not in the body of PM and is defined in a macro
rule defintion). We assume that for every rule Ri, the unique control state
identifier of Ri is given by uniqueCtlState(Ri).

6It is important to note that in M step N , M and N represent two ASM rules and not individual
machines.

122

5. CoreASM: The Plugins CoreASM Documentation

R1 step R2 ≡
if uniqueCtlState(@R1) ∈ ctl state then
R1

seq
if 6 ∃ cs ∈ ctl state subControlState(cs,@R1) then

remove uniqueCtlState(@R1) from ctl state
add uniqueCtlState(@R2) to ctl state

else if uniqueCtlState(@R2) ∈ ctl state then
R2

seq
if 6 ∃ cs ∈ ctl state subControlState(cs,@R2) then

remove uniqueCtlState(@R2) from ctl state
else

add uniqueCtlState(@R1) to ctl state

The following patterns formally define the semantics of step :

Step Plugin

L α
e
r 1 step β

e
r 2 M → if uniqueCtlState(α) ∈ ctl state then

pos := α
else

if uniqueCtlState(β) ∈ ctl state then
pos := β

else
add uniqueCtlState(α) to ctl state

L αu1 step β
e
r 2 M → if 6 ∃cs ∈ ctl state subCtlState(cs, uniqueCtlState(α)) then

remove uniqueCtlState(α) from ctl state
add uniqueCtlState(β) to ctl state

[[pos]] := (undef, u1, undef)

L α
e
r 1 step βu2 M → if 6 ∃cs ∈ ctl state subCtlState(cs, uniqueCtlState(β)) then

remove uniqueCtlState(β) from ctl state
[[pos]] := (undef, u2, undef)

For now, we can define the global control state of the machine as a monitored
function that returns the value of ctl state.

Questions and concerns:

1. How do we want multiple calls to a single macro rule R be handled? I.e., should
the execution continue regardless of where R is being called?

2. In every computation step the main program of the machine is evaluated as a
whole, so if an step construct is guarded by a condition and the condition
does not hold in subsequent steps, that local step will not continue while the
machine continues.

123

5. CoreASM: The Plugins CoreASM Documentation

5.4.5 The Observer Plugin

It is sometimes desirable to have a machine-readable log of the execution of a CoreASM
specification for offline analysis and visualization. One argument for such a feature is
that it allows for a clear separation of the execution and the analysis. For example,
execution of certain specifications may be time-consuming, but once the execution is
done, visualization of the run of the system can be done more quickly and repeatedly,
if all the updates of interest are recorded.

The Observer plugin monitors the execution of specifications in CoreASM and
produces an XML log of the updates that are produced after every computation step.
The plugin can be configured so that only the updates on certain locations of interest
are recorded. In order to monitor the updates, the plugin registers itself for the
extension point where the control flow of the engine switches to the Step Succeeded
control state (see Figure 3.6). We have,

∀s ∈ EngineMode, isPluginRegisteredForTransition(observerPlugin, s, stepSucceeded)

where observerPlugin ∈ Plugin is the Observer plugin.
At this point in the engine lifecycle (when the control state changes to Step Suc-

ceeded), the computation step is successfully completed and the updates are applied
to the state. The Observer plugin then simply goes through the last set of updates
and records an XML log of those updates that modify the locations of interest.

pluginExtensionRule(observerPlugin) = @FireOnModeTransitionObserver

Observer Plugin

FireOnModeTransitionObserver(sourceMode, targetMode) ≡
if targetMode = stepSucceeded then

local xmlElement [xmlElement := newStepXMLElement] in
seq

foreach u in updateSet with uiLoc(u) ∈ observerLocationsOfInterest then
AddXMLChildElement(xmlElement,newUpdateXMLElement(u))

next
AppendToLog(xmlElement)

5.4.6 Math Plugin

In writing executable specification, one may need to have access to various mathe-
matical constants (such as π) or functions (such as the trigonometric functions) as
part of the Number background. The Math plugin addresses this requirement by
extending the vocabulary of CoreASM states and providing a number of basic math-
ematical functions. Most of these functions are equivalent of their Java counterparts
defined in the Java library package java.lang.Math.

In the following, we present a few of these functions as examples. A complete list
of Math plugin functions is provided in Appendix A.5.5.

124

5. CoreASM: The Plugins CoreASM Documentation

• abs(v) returns the absolute value of v.

• asin(v) returns the arc sine of an angle, in the range of −π/2 through π/2.

• floor(v) returns the largest (closest to positive infinity) value that is less than
or equal to the argument and is equal to a mathematical integer.

• log(v) returns the natural logarithm (base e) of v.

• max(v1, v2) returns the greater of two values.

• min(v1, v2) returns the smaller of two values.

• pow(x, y) returns the value of the first argument raised to the power of the
second argument.

• powerset(set) computes the powerset of the given set.

• sum({v1,...,vn}, @f) returns the sum of a collection of numbers, after ap-
plying function f to the values in the collection. If there is one non-number in
the collection, it returns undef.

An Example

CoreASM MathPluginExample

use Standard

use Math

init Init

rule Init = {
program(self) := @Main

a(1) := 5

a(2) := 10

a(100) := 500

}

rule Main =

let e = MathE in {
print "’e’ = " + e

print "log(e) = " + log(e)

print "sin(30) = " + round(sin(toRadians(30)) * 10) / 10

print "asin(0.5) = " + round(toDegrees(asin(0.5)))

print "min(51, 43) = " + min(51, 43)

print "sum(1, 2, 100) = " + sum({1, 2, 100})

125

5. CoreASM: The Plugins CoreASM Documentation

print "sum(1, 2, 100, @a) = " + sum({1, 2, 100}, @a)

print "powerset(1, 2, 3) = " + powerset({1, 2, 3})
print "2, 3 memberof powerset(1, 2, 3 = "

+ ({2, 3} memberof powerset({1,2,3}))
choose x in powerset({1, 2, 3, 4}) do

if x memberof powerset({1, 2, 3}) then

print x + " is a member of powerset(1, 2, 3)"

else

print x + " is not a member of powerset(1, 2, 3)"

ifnone

print powerset({1, 2, 3})
}

As an example, the output of the execution of Program ?? is the following:

sum({1, 2, 100}) = 103
min(51, 43) = 43
asin(0.5) = 30
powerset({1, 2, 3}) = {{}, {3}, {2}, {3, 2}, {1}, {3, 1}, {2, 1}, {3, 2, 1}}
{2, 3} memberof powerset({1, 2, 3} = true
log(e) = 1
{3, 2, 4} is not a member of powerset({1, 2, 3})
sum({1, 2, 100}, @a) = 515
’e’ = 2.718281828459045
sin(30) = 0.5

5.4.7 The Time Plugin

To introduce the notion of time in CoreASM, the Time plugin extends the vocabulary
of the state with a nullary monitored function

now: -> NUMBER
that provides the current time of the system as a numeric value. Although, such
a monitored function seems to be all that is basically needed to have the notion of
time in CoreASM, future versions of this plugin could introduce various functions to
extract date and time components from time values (e.g., day of the week, hours, or
minutes) or to produce specific or relative time values, such as 12/May/2009 or now
- two hours.

5.4.8 Property Plugin

The Property Plugin is a small plugin that allows correctness properties, expressed
as LTL formulas, to be included in the header of a CoreASM specification. Presently,
specified properties do not have any meaning during ASM simulations (although it

126

5. CoreASM: The Plugins CoreASM Documentation

may be possible to extend the Property plugin to check simple global assertions).
Correctness properties are only applicable during model checking, and are translated
by our CoreASM to Promela translator.

The Property plugin provides the following pattern to declare new LTL properties:

[check] property LTL-property

Including the keyword check with a property declaration indicates that the prop-
erty should be checked during model checking.

The following operators are defined with the given precedence levels (see 4.2.4):

operator precedence level description
G 500 Always
F 500 Eventually
X 500 Next
U 400 Until
V 400 Release

The Property plugin was developed to improves the usability of the Spin model
checker, since Spin does not allow LTL properties to be included directly in a spec-
ification. In Spin, properties are defined by describing the behavior of a property
automaton. Moreover, Spin only allows a single property automaton in each model,
while the Property plugin allows multiple properties to be specified for a single spec-
ification.

5.5 The JASMine Plugin

In this chapter we have introduced various CoreASM plugins implementing most com-
mon mathematical objects and structures, such as numbers, sets, lists, and maps.7

While these backgrounds are usually sufficient for modeling most algorithms and
systems, complex specifications may need more advanced features, not necessarily
data-oriented. For example, an executable specification for a new peer-to-peer pro-
tocol may need access to network sockets and files; a specification that is used as an
executable stub for a software module that still has to be implemented or for a missing
piece of hardware may need to put up an on-screen window showing its current state;
a complex numerical algorithm which is already specified by some standard may be
moved out of a specification and a concrete implementation written in a standard
programming language may be used in its place.

There is thus a clear need to allow interaction between CoreASM specifications and
concrete code, including operating systems functions, external libraries, and custom
code. Among the various tools for running ASM models [28], AsmL (ASM Lan-
guage) [66], XASM (eXtensible ASM) [2], and AsmGofer [69] provide some support

7This section is based on a joint work with Dr. Vincenzo Gervasi and is currently under publication
in [43].

127

5. CoreASM: The Plugins CoreASM Documentation

for interaction with external programming languages. AsmL, built on the Microsoft
.NET framework [65], incorporates numerous object-oriented features and constructs
of Microsoft .NET and supports interaction with external .NET classes. The XASM
language allows external C-functions to be used in XASM specifications. However,
the arguments and return values of C-functions can only be of a specific C-type that
represents elements of the super-universe in XASM. Newer versions of XASM sup-
port interaction with Java classes but the support is only limited to invoking Java
object constructors. AsmGofer [69], an ASM interpreter embedded in the functional
programming language “Gofer”, supports the use of functional programming in the
definition of types and functions.

In this section, we present JASMine, a CoreASM plugin that offers a solution for
the interaction of CoreASM specifications and concrete code by integrating Java with
CoreASM.

5.5.1 Requirements and Limitations

The Java Class Library provides an extremely rich (and continuously growing) set of
APIs and efficient implementations for almost any computing task. Moreover, Java
offers platform-independence, support on a wide variety of architectures, and many
modern language features that make it an attractive target for the integration of
ASM specifications with concrete code.

However, there is a risk that by intertwining the “ASM world” of elements, func-
tions and predicates and the “object world” of an object-oriented language, the very
nature of the ASM paradigm may be changed in fundamental ways. This is, for ex-
ample, what happened in AsmL [66], where rules and methods, elements and objects,
sets and the Set object of the .NET framework become confused.

In contrast to AsmL, we do not want interaction with Java to pollute the CoreASM
word. In particular,

• we want to maintain typelessness of the language: it must be possible to treat
Java objects as regular ASM values, and to pass untyped ASM elements as
arguments to Java methods (with type checking performed at run time only);

• we want to maintain the parallel model of execution of ASMs: the notion
of step must be preserved, as well as the assumption that the ASM state and
environment is observed in a stable snapshot, and updates are applied in parallel
and only when no conflicts arise;

• we want to avoid the introduction of extraneous fundamental concepts: the
notions of state, update and step should suffice to describe the computation.

The fundamental choice of preserving the ASM computation model sets strong con-
straints on how JASMine works, which will be described later in more detail.

128

5. CoreASM: The Plugins CoreASM Documentation

Four basic capabilities are needed for a minimal reasonable level of interaction,
namely: 1) instantiating new objects, invoking their constructors, and storing a ref-
erence to the new object in the ASM state; 2) accessing (reading and writing) public
fields of objects, including static fields of classes; 3) invoking public methods of objects
and static methods of classes, passing the needed arguments, and storing the result
in the ASM state; 4) converting between certain ASM types and the corresponding
Java types and back, as needed to support expression evaluation and updates. The
mechanisms we propose to provide these capabilities constitute a conservative ex-
tension of CoreASM, in the sense that the semantics of the non-JASMine parts of a
specification are not altered by the extension8.

Notice that the integration that JASMine provides between ASMs and Java is far
less complete than the one existing between, for example, AsmL and .NET: in partic-
ular, it is not currently possible to define new Java classes or interfaces through ASM
specifications, nor is it possible to use Java inheritance in CoreASM specifications.
Interfaces and abstract classes cannot be accessed at all.

We do not see these limitations as particularly relevant in practice. In fact, the
design goal of JASMine is to allow interaction between ASMs and Java, rather than
full integration, and we believe the JASMine plugin serves well in this capacity.

5.5.2 Language Extensions

The following subsections describe in turn the constructs implementing the four ca-
pabilities mentioned above.

Creation of Java Objects

Java objects in JASMine are seen as part of the environment, not of the state. This is
a fundamental design choice, which differs from what others have done (e.g., AsmL),
and helps in cleanly separating the structures-based state of ASM, which only changes
between steps and through non-conflicting updates, from the independently evolving
state of Java, which can change at any time and also due to external events (e.g., a
timer or GUI actions).

JASMine introduces a new background (hence, a new kind of element in the ASM
state) called JObject which holds a reference to the real Java object. Only this im-
mutable reference enters the ASM state as a value, and only through a special update
command, hence the basic ASM computation cycle is preserved. As a consequence,
creation of a new object is not considered an expression (as is the new operator in
Java) but rather a rule, since it results in an update. We have

jObjectBack ∈ BackgroundElement

name(jObjectBack) = “JOBJECT”

newValue(jObjectBack) = newJObject()

8In other terms, a specification which does not interact with Java, and thus does not use the
JASMine constructs, has the same semantics whether it includes the JASMine plugin or not.

129

5. CoreASM: The Plugins CoreASM Documentation

where newJObject() returns a new JObject element pointing to a new Java object.
In formal terms, using the notation described above, creation of a new Java object

is accomplished as follows:

CreationRules

L import native α
e

into β
e
l M → pos := β

L import native αx into βl M → if isJavaClassName(x) then
if hasEmptyConstructor(x) then

EvaluateImport(l, x, 〈〉)
else

Error(‘Constructor not found.’)
else

Error(‘Java class not found.’)

L import native αx(λ1
e
e 1, . . . ,

λn
e
e n) into β

e
l M → pos := β

L import native αx(λ1
e
e 1, . . . ,

λn
e
e n) into βl M →

if isJavaClassName(x) then
choose i ∈ [1..n] with ¬evaluated(λi)

pos := λi
ifnone

if hasConstructor(x, 〈jValue(value(λ1)), . . . , jValue(value(λn))〉)
EvaluateImport(l, x, 〈λ1, . . . , λn〉)

else
Error(‘Constructor not found.’)

else
Error(‘Java class not found.’)

Here, we use the jValue function to abstract from the task of potentially convert-
ing CoreASM elements to Java objects (see Page 134). The actual evaluation of the
import native statement is defined by the following macro, which takes as param-
eters a location where to store the reference to the new Java object (as a JObject
value), an identifier representing the name of the class, and a sequence of positions
of values, which will be the actual parameters for the constructor call:

EvaluateImport

EvaluateImport(l, x, 〈λi, . . . , λn〉) ≡
let u = DefUpd(CREATE, (l, x, 〈jValue(value(λ1)), . . . , jValue(value(λn))〉)) in

let jtl = (“jasmChannel”, 〈〉) in
[[pos]] := (undef, {|〈jtl, u, jasmAction〉|}, undef)

Notice in the specification above how the execution of the rule does not really
instantiate the new object (whose constructor could have side effects, and thus alter
the Java state), but instead accumulates a special update instruction (a deferred
update) akin to the update instructions used for aggregation and partial updates [64].
Actual instantiation will be performed at update application time, as will be shown
later on. The designated location (“jasmChannel”, 〈〉) accumulates all the JASMine-

130

5. CoreASM: The Plugins CoreASM Documentation

related update instructions that are performed during a step, whereas the DefUpd
macro produces an encoding of its parameters, suitable for later execution of the
relevant update.

While the subject will be discussed more fully in the following, it is worthwhile
to remark here that this strategy ensures that any action that can perturb the envi-
ronment (e.g., instantiation of a new Java object) will only be taken if the step turns
out to be effective, i.e. if no conflicting updates are generated in that step.

Access to Fields of Java Objects

Reading a field in a Java object does not have side effects and thus can be treated as
a pure expression as far as the ASM computation cycle is concerned9. In particular,
the value in the field can be computed immediately at expression evaluation time. In
contrast, writing into a field has observable side effects, and thus cannot be performed
during a step, but only between steps; the corresponding value is then stored in the
field at update application time through another deferred update. The following rules
detail the semantics used for field access in JASMine.

FieldReadExpression

L α
e
e ->βx M → pos := α

L αv->βx M → if isJObject(v)
if hasField(jObj(v), x)

if ImplicitConversionMode then
[[pos]] := (undef, undef, asmValue(GetField(jObj(v), x)))

else
[[pos]] := (undef, undef,newJObject(GetField(jObj(v), x)))

else
Error(‘No such field.’)

else
Error(‘Not a Java object.’)

As can be observed, field access expressions are evaluated by first evaluating the
reference to the JObject, and then (after checking that the given value is actually a
JObject and that the corresponding class has an accessible field with the given name)
the value in the field of the Java object is retrieved, possibly converted to its ASM
counterpart based on the configuration of the plugin (see Section 5.5.2), and finally
used as the value of the whole expression. Access to static class fields are handled
similarly, and we skip here the corresponding rules for brevity.10 Assignments are
treated through deferred updates:

9In a multi-threaded context, field values can change at any moment, even without any write
action by the ASM specification. To guarantee the stability of the environment, values read from
Java fields are cached by JASMine when first read, and the same value is used if the same field read
expression on the same Java object is evaluated multiple times in the same step.

10Reading a static field of a class that has a static block and is not initialized can potentially have
side effects. Currently, we do not handle this special case and treat static fields and object fields the
same with regard to read access.

131

5. CoreASM: The Plugins CoreASM Documentation

FieldWriteRule

L store α
e
e into β

e
e ->γx M →

choose λ ∈ {α, β} with ¬evaluated(λ)
pos := λ

ifnone
if isJObject(value(β)) then

if hasField(jObj(value(β)), x) then
let u = DefUpd(STORE, (value(β), x, jValue(value(α))) in

let jtl = (“jasmChannel”, 〈〉) in
[[pos]] := (undef, {|〈jtl, u, jasmAction〉|}, undef)

else
Error(‘No such field.’)

else
Error(‘Not a Java object.’)

Notice how write access to fields is treated as a partial update to the internal
structure of the JObject element. Before the engine applies the updates to the state,
the JASMine plugin as the corresponding aggregator will have to check that no con-
flicting assignments to the same field of a given JObject element are performed, and
moreover that the JObject as a whole is not updated to a different value in the same
step11. Once more, write access to static fields of classes is very similar and we do
not detail it here.

Invoking Methods of Java Objects

As remarked above, invocation of methods in Java objects can have side effects which
can change both the internal state of the object and of other objects as well (i.e., by
calling other methods or accessing public fields). For this reason, method invocation
is handled through a deferred update, as described below. Two forms of method
invocation exists: one for void methods, which have no return value, and one for
methods returning a value. The simplest version for void methods invocation is
specified as follows:

11The same situation is found in other cases, e.g. when both a := {1, 2} and add 3 to a appear
in the same step.

132

5. CoreASM: The Plugins CoreASM Documentation

VoidMethodInvocationRule

L invoke α
e
e ->βx(λ1

e
e 1, . . . ,

λn
e
e n) M →

choose λ ∈ {α, λ1, . . . , λn} with ¬evaluated(λ)
pos := λ

ifnone
if isJObject(value(α))

if hasMethod(jObj(value(α)), x, 〈jValue(value(λ1)), . . . , jValue(value(λn))〉)
let u = DefUpd(INVOKE,

(undef, value(α), x, 〈jValue(value(λ1)), . . . , jValue(value(λn))〉)) in
let jtl = (“jasmChannel”, 〈〉) in

[[pos]] := (undef, {|〈jtl, u, jasmAction〉|}, undef)
else

Error(‘No such method.’)
else

Error(‘Not a Java object.’)

The version for non-void methods is only slightly more complex. We provide a
special update instruction (in the vein of add . . . to . . .) so that the actual method
call is only performed if the update set is guaranteed to be consistent (see section 5.5.2
for detailed conditions).

This solution may be inconvenient at times. For example, it is not possible to
assign directly the result of a method invocation to a field of the same or of a dif-
ferent object, as two separate invoke and store instructions are needed, and in two
different steps. In other words, the effect of any rule altering the state of the “Java
world” is only observable in the next step of the machine, which of course discourages
programming in a sequential style: instead, any needed sequentiality will have to
be made explicit, e.g. by using an FSM representation of the ASM. Also, field up-
dates and method invocations performed in the same step will be performed—in due
time—in an unspecified order, since update instructions in CoreASM constitute an
unordered multiset. This behavior, too, may surprise the unaware Java programmer
at his first approach with ASMs, as will be discussed in Sections 5.5.4 and 5.5.5.

Nevertheless, we believe that the soundness of the semantics that is given by the
deferred updates approach is worth the inconvenience, and can actually help even
novice specifiers in drawing a clear line between what needs to be specified and the
actual behavior (possibly, over-specified) of the implementation.

Formally, invocation of non-void methods is specified as follows:

133

5. CoreASM: The Plugins CoreASM Documentation

NonVoidMethodInvocationRule

L invoke α
e
e ->βx(λ1

e
e 1, . . . ,

λn
e
e n) result into γ

e
l M →

choose λ ∈ {α, γ, λ1, . . . , λn} with ¬evaluated(λ)
pos := λ

ifnone
if isJObject(value(α))

if hasMethod(jObj(value(α)), x, 〈jValue(value(λ1)), . . . , jValue(value(λn))〉)
if loc(γ) 6= undef

let u = DefUpd(INVOKE, (loc(γ), value(α), x,
〈jValue(value(λ1)), . . . , jValue(value(λn))〉)) in

let jtl = (“jasmChannel”, 〈〉) in
[[pos]] := (undef, {|〈jtl, u, jasmAction〉|}, undef)

else
Error(‘Cannot update a non-location.’)

else
Error(‘No such method.’)

else
Error(‘Not a Java object.’)

As for the previous constructs, we do not detail here how static methods on classes
are invoked, as the mechanism is totally analogous.

In practice, if an exception is returned, two updates are produced: one storing the
value of the exception (as an ASM JObject) in a designated location, and another
one storing a different value to the same location. As a consequence, Java exceptions
are mapped in ASMs to conflicting updates, which can be caught via the Turbo ASM
try/catch rule [20].

Type Conversion

JASMine operates in two type conversion modes: implicit conversion and explicit
conversion. In the implicit mode, which is the default mode, JASMine automatically
converts types between CoreASM and Java when needed. This reduces the hassle
of type conversion and helps in writing more concise CoreASM specifications. Auto-
matic type conversion, however, has its drawbacks in certain applications: it converts
values even when such a conversion is not needed; e.g., when returned values of Java
methods are to be passed as arguments in future calls to other Java methods. In the
explicit mode, the user is responsible for explicitly converting values between Java
and CoreASM using the provided CoreASM functions described further below.

JASMine constructs apply type conversion when needed, through the functions
javaValue and asmValue that convert CoreASM values to Java objects and vice versa.
These two functions are defined by cases as summarized in Table 5.1. In most of
the rules presented in this paper, the jValue function abstracts the details of type
conversion based on the conversion mode.

The JObject background offers the following two functions, which perform the
same conversion on arbitrary values:

134

5. CoreASM: The Plugins CoreASM Documentation

Java type CoreASM background
bool, Boolean Boolean
byte, short, int, long, float, double, Number
Byte, Short, Integer, Long, Float, Double
char, Character currently not supported
String String
Set interface Set
List interface Sequence
Map interface Function (dynamic)
arrays currently not supported
any other object JObject

Table 5.1: Type Conversions Between CoreASM and Java.

• toJava: Element -> JObject
valuefe(toJavaFunction, 〈v〉) = javaValue(v)

• fromJava: JObject -> Element

valuefe(fromJavaFunction, 〈v〉) =
{

asmValue(jObj(v)), if isJObject(v);
undefe, otherwise.

Aggregation of Deferred Updates

As we have seen, any modification to the “Java world” is performed through special
update instructions, called deferred updates (but not to be confused with ASM up-
dates), to ensure a stable state and a stable environment in course of a single ASM
computation step. Three types of deferred updates are used by JASMine: instantia-
tion (CREATE), field writing (STORE) and method invocation (INVOKE).

Each type of deferred update carries the information necessary for its execution;
in particular, CREATE carries information on the Java class to create and on the
location of the new ASM element to create; STORE carries information about the
JObject whose field is to be modified, about the name of the field to modify, and
about the new value to be written in the field; INVOKE carries information about the
JObject on which the method has to be invoked, about the name of the method, and
about the (possibly empty) list of arguments to pass to the method.

The following compatibility conditions must be met for a set of updates to be
considered consistent:

1. No other update is permitted on the ASM location used in a CREATE. Notice
that this includes JASMine deferred updates (i.e., it is not possible to import
twice to the same location) as well as regular updates (i.e., it is not possible
to assign a different value through the assignment operator := or other update
rules to a location used in a CREATE).

135

5. CoreASM: The Plugins CoreASM Documentation

2. If multiple STOREs are performed on the same field of the same object, they
must all assign the same value.

3. Any location used to store the result of an INVOKE cannot appear in any other
update.

Notice that this latter condition is sufficient, but not necessary to guarantee con-
sistency. In fact, we disallow even multiple updates that would write the same value
(which are normally permitted under standard ASM semantics). The reason for this
more restrictive choice is that in general it is impossible to know which value will
be returned by a method call without actually calling the method, and we want the
method to be called only if a consistent set of updates is generated. Hence, we require
a stronger guarantee than what is strictly needed.

If the set of update instructions is consistent, the prescribed operations are per-
formed in unspecified order. Notice that the first condition above ensures that newly-
created JObjects are not used in the same step, so there is no need to specify a
special ordering with CREATE update instructions performed before STORE and IN-
VOKE ones.

A common troublesome case is when multiple method invocations are performed:
if the particular sequence is order-sensitive, ordering will have to be specified explicitly
by using a finite state automaton. In most cases, though, the specific order will
be immaterial (e.g., Point.setX() and Point.setY()), and in these cases multiple
invocations can well be specified in the same step. We regard this as a desirable
feature for a specification: in fact, the implementer will know that fields can be
written and that methods can be invoked in any order as long as they are specified
to happen in a single ASM step, whereas the ordering between different steps is
significant, and should be respected in the implementation.

5.5.3 Implementing JASMine

In its capacity as a bridging technology, JASMine has to interact closely with both
the CoreASM engine and the Java virtual machine. We will discuss these interactions
in the following.

Interacting with the CoreASM Engine

The CoreASM extensibility architecture dictates that plugins extending the basic
CoreASM language have to implement one or more interfaces, depending on which
elements of the language (both syntax and semantics) and of the computation cycle
are contributed. In particular, JASMine provides the following extensions:

• It implements the parser plugin interface to extend the parser with new syntax
for native import, field read/write, and method invocation. The syntax rules
contributed to the language correspond to the syntactical patterns shown in
Section 5.5.1.

136

5. CoreASM: The Plugins CoreASM Documentation

• It implements the interpreter plugin interface and contributes the semantics
for the new syntactical patterns. The semantics contributed correspond to the
ASM rules shown in Section 5.5.1.

• It implements the vocabulary extender interface to extend the CoreASM state
with the JObject background and the monitored jasmChannel function. In
particular, the two casting functions toJava and fromJava are introduced as
part of the JObject background. Moreover, element equality, ordering and
conversion to a String value are forwarded to the Java object represented by
any given JObject value.

• It implements the aggregator interface to provide aggregation rules which encode
all the JASMine update instructions computed in one step into one single update
to the jasmChannel location.

• To actually communicate with the Java virtual machine, the value of jasmChannel
must be read after every successful step and the actions encoded therein must
be parsed and applied to the corresponding Java objects. To perform this,
the JASMine plugin extends the lifecycle of the CoreASM engine and reads the
value of jasmChannel whenever the control state of the engine is switched to
Step Successful, i.e. whenever a step is completed with a consistent set of up-
dates; it then executes all the CREATE, STORE and INVOKE operations stored
in jasmChannel.

Interacting with the JVM

Interaction between JASMine and the Java Virtual Machine is limited to a few, well-
defined operations, and is mostly mediated by the Java Reflection API [72].

The application of updates encoded in jasmChannel entails the following steps.

1. For CREATE updates, the classical Class.forName() method is invoked, pass-
ing a string representation of the imported class name. Once a Class object
for the desired class is obtained, if the nullary version of import native was
used (i.e., with no arguments passed to the constructor of the object), the
Class.newInstance() method is invoked to obtain the instance. Otherwise,
Class.getConstructor() is called to retrieve the corresponding constructor,
then the constructor’s newInstance() method is called, with the given argu-
ments, to obtain the instance. A new JObject element encapsulating the new
instance is then created and assigned to the ASM location provided in the
CREATE record.

2. For STORE updates, the class of the referenced object is obtained by calling
getClass() on the reference held by the JObject; the Field object is then
retrieved through Class.getField(), and finally Field.set() (or one of its
primitive type variants) is called to assign the value from the STORE record.

137

5. CoreASM: The Plugins CoreASM Documentation

3. For INVOKE updates, the class of the referenced object is obtained as above,
then the matching Method object is retrieved through Class.getMethod()
(notice that in this way only public methods can be retrieved), and finally
Method.invoke() is called, with the appropriate parameters from the INVOKE
record. If the method was non-void, the resulting value is then stored in the
ASM location provided in the INVOKE record.

It is worthwhile to remark that fields and methods name resolution is entirely
delegated to the Reflection API, and thus follows the normal resolution algorithm in
Java (see [47, sections 8.2 & 8.4]).

Evaluation of field read access is performed immediately upon encountering the
corresponding expression, by first obtaining the Field object as for STORE updates,
then invoking Field.get() (or one of its primitive types variants) to retrieve the field
value, which is then returned as the expression’s value. These operations constitute
the GetField macro used in the semantics (Section 5.5.2).

The various functions used in Section 5.5.2 (isJavaClassName, hasEmptyConstructor,
hasConstructor, hasField, hasMethod) are directly mapped to the corresponding Re-
flection API methods. All these predicates are implemented by trying to access the
given class, constructor, field or method and possibly catching the various exceptions
(ClassNotFoundException, NoSuchMethodException, NoSuchFieldException) thrown
by the Reflection API methods. The jObj function returns a reference to the Java
object encapsulated by a JObject.

Finally the conversion functions javaValue and asmValue are implemented by
cases, as summarized in Table 5.1. In particular, when converting from CoreASM
elements to Java values (javaValue function), Booleans and numbers are simply con-
verted to the corresponding primitive types in Java; numbers are generally converted
to double, then downcast as needed to fit smaller types. CoreASM’s strings are wrap-
pers around Java strings, so the conversion is trivial. More complex mathematical
structures (e.g., set or sequences) are generally implemented in CoreASM as wrappers
to the various Java Collections API objects, so in this case also conversion amounts
to unwrapping the underlying object. Any other CoreASM value is upcast to Object
and passed as-is, thus realizing an opaque container for the ASM value from the point
of view of Java code.

Conversion from Java values to CoreASM elements (asmValue function) is similar,
except that any unrecognized Java object is wrapped in an opaque JObject element
from the point of view of ASM code. This allows access to fields and invocation of
methods of objects returned from other Java methods, as in

invoke calendar->getCurrentDate() result into today

followed, in a subsequent step, by

wday := today->weekDay

invoke today->add(7) result into nextWeek

138

5. CoreASM: The Plugins CoreASM Documentation

5.5.4 A Simple Example

In this section, we present a simple example of an ASM using JASMine constructs.
Our example, presented below executes in three steps (distinguished by the mode
function ranging from 1 to 3) and demonstrates the employment of the sorting capa-
bilities of the standard Java library.

CoreASM JASMineExample

use Standard

use Jasmine

function mode: -> NUMBER initially 1

init InitRule

rule InitRule = {
case mode of

1: import native java.util.TreeSet([8, 10, 4, 32]) into list

2: {
print "The list is " + list

invoke list->size() result into s

invoke list->add(15)

}

3: {
print "Size of list is " + s

print "After adding 15, the list is " + list

}
endcase

mode:= mode + 1

}

In the first step, we instantiate a SortedSet Java object based on a CoreASM
list element. Here, JASMine automatically converts the CoreASM list (and all its
elements) into their equivalent Java objects. In the second step, three tasks are done
in parallel: the resulting SortedSet Java object is printed out, its size is retrieved
and stored in a CoreASM location (by invoking its size() method), and a new value
(15) is added to the list. In the last step, the size of the list and its new value (after
adding 15) is printed out. Here is the output of execution:

The list is [4, 8, 10, 32]
Size of list is 4
After adding 15, the list is [4, 8, 10, 15, 32]

139

5. CoreASM: The Plugins CoreASM Documentation

Notice that the values of the list are automatically sorted in the SortedSet Java
object and the order is maintained even after the addition of 15. It is also interesting
to note that since the addition of 15 is done in parallel with retrieving the size of the
list, different runs of the specification may result in either of the values 4 or 5 for the
size of the list in the output, depending on in which order these two method calls
(size() and add(15)) are performed by JASMine.

5.5.5 Final Remarks

As we mentioned earlier, in defining the semantics of JASMine we have chosen to
be faithful to the theoretical ASM model. This choice has important pragmatic
implications that we discuss here.

In particular, JASMine presents a stable view of the Java environment to ASMs.
This is required by ASM semantics, but may be inconvenient in practice, as any
action performed on a Java object (e.g., storing a value in a field or invoking a
method) will produce observable effects only in the next step of the machine: thus,
many programming patterns typical of sequential programming cannot be applied.
This is also true in the case of Turbo ASM rules: hence, the n-th step in a seq or
iterate rule will not observe the effects on the environment of the previous n − 1
steps, as the corresponding updates are being deferred as described in Section 5.5.2.
This is due to the impossibility of rolling back the Java environment to a previous
state, which prevents speculative execution of the inner steps of a Turbo ASM step.
For example, a while cycle like

import native java.io.File into file

...

while (lastModified <= lastActed)

invoke file->lastModified() result into lastModified

...

which could be used to wait for a modification to a file, will not work as expected: in
fact, invocations to lastModified() will be deferred until the end of the step, most
probably defeating the programmer’s intention.

In terms of style, one could argue that such behavior should be either encapsulated
inside a single Java method waitModification() (to be invoked through JASMine),
or lifted up to the top level of the ASM specification.

140

Chapter 6

Implementing CoreASM

As we addressed in Section 1.2, one of the requirements of the CoreASM modeling
environment is that it should be implemented as an open framework, under an open
source license, and using a platform-independent programming language, so that it
can be later improved or modified as needed by its community of users. Realizing
this requirement, we decided to implement CoreASM using the Java programming
language, one of the most popular platform-independent1 programming languages
available.

In order to make CoreASM and its source code freely available for both the aca-
demic environment and the industry, we had to carefully choose an open source
license that provides users and developers the freedom they need to use and modify
CoreASM, without the restrictions that come with many open source licenses. After
considering various open source licenses such as GNU Lesser General Public License
(LGPL) [40], Apache Software License [41], and BSD licenses [68] and looking at sim-
ilar open source projects, we have decided to make CoreASM source code available
under the Academic Free License (AFL) version 3.02. AFL 3.0 is an open source
license with no reciprocal obligation to disclose source code; i.e., derivative works can
be licensed under other licenses, and the source code of those derivative works need
not be disclosed. Such a license provides a good compromise between the availability
of the original source code in a free form and the existence of potentially proprietary
editions and extensions in the industry.

Currently, the CoreASM project is publicly available on Sourceforge.net,3 one of
the most popular repositories of open source software offering online resources for
open source software development and content creation. Since its first beta release
in September 2006, CoreASM has gone through a number of revisions and its lat-
est version (under testing at the time of writing this document) offers substantial

1According to Java’s download page on http://java.sun.com, its standard edition is available
on a wide variety of hardware and software platforms: Linux, Linux Intel Itanium, Linux x64, Solaris
SPARC, Solaris x64, Solaris x86, Windows, Windows Intel Itanium, and Windows x64.

2http://www.opensource.org/licenses/afl-3.0.php
3http://www.sourceforge.net

141

http://java.sun.com
http://www.opensource.org/licenses/afl-3.0.php
http://www.sourceforge.net

6. Implementing CoreASM CoreASM Documentation

improvements over its previous version in terms of both features and performance.

The rest of this chapter continues with an overview of the architecture of CoreASM
in Java. Section 6.2 looks into the implementation of the CoreASM engine focusing on
the implementation of the two more challenging components, the Abstract Storage
and the Parser, and the implementation of CoreASM plugins. Section 6.3 concludes
this chapter by introducing the tools and user interfaces that are built around the
CoreASM engine.

6.1 The Architecture

The CoreASM engine has a micro-kernel architecture. Recalling the architecture
of CoreASM as presented in Chapter 3, the kernel of the engine provides only the
essential aspects of the engine required for the plugins and applications to be built
upon. Furthermore, the kernel is decomposed into four components: a parser, an
interpreter, an abstract storage, and a scheduler. The interface of the engine to its
environment (and in parts, to its four components) is provided by a special component
called the Control API (see Figure 3.2).

Closely following the design of the engine, the Java implementation of CoreASM
implements the kernel of the engine in terms of four components and a Control API.
The interface of the components are defined by four Java interface files: Parser,
Interpreter, AbstractStorage, and Scheduler. For every component, a default
implementation is provided in form of a Java class file. However, every component
is carefully encapsulated in its interface and, as a result, a different implementation
can be used as long as it complies with the the interface of the component and
its specification. Since Control API acts as a double interface, providing services
both to the environment of the engine and to its internal components—the former
being a subset of the latter, two Java interface files together define the interface of the
engine: (i) a CoreASMEngine interface defines the interface of the engine to its outside
environment offering services such as loading, parsing, or execution of specifications;
(ii) a ControlAPI which extends the CoreASMEngine interface providing access to
every component, a mapping of plugin names to actual plugin instances, and error
reporting services. An implementation of the CoreASM engine is provided by the
Java class file Engine which implements the ControlAPI interface.

The CoreASMEngine interface provides a comprehensive interface to the engine.
Through this interface, applications can (i) load CoreASM specifications into the en-
gine, execute them step by step, and access the simulated state and the latest update
set throughout the execution, (ii) use the engine as a parser to just parse specifica-
tions into parse-trees (which can then be externally processed for various purposes
such as model checking [37, 62]), or access the list of plugins required by a given
specification, (iii) modify various engine properties and also observe the behavior of
the engine by implementing the EngineObserver interface.

There are currently two user interfaces available for CoreASM (see Figure 6.1): a

142

6. Implementing CoreASM CoreASM Documentation

String

Number

Set

List

String

Number

Set

List

CoreASM
to

Promela

CoreASM
Kernel

StringMaster
mind

JASMine

Observer

Plotter

Standard Plugins
Custom Plugins

[mc]square

Custom Applications

CSDe

Eclipse Carma

User Interfaces

Figure 6.1: CoreASM Kernel, Plugins, and Applications

comprehensive command-line user interface, called Carma, and a graphical interactive
development environment in the Eclipse platform, known as the CoreASM Eclipse Plu-
gin. There is also a sophisticated tool under development for creating and modifying
Control State ASMs and translating them into CoreASM specifications, called CSDe.
Section 6.3 presents these tools in more detail.

The CoreASM kernel also defines the skeleton of a CoreASM plugin in form of a
Java abstract class Plugin. Various types of extensions that plugins can provide to
the engine, such as parser extension or vocabulary extension (see Section 4.5 for a
complete list), are defined in terms of Java interface files. Every CoreASM plugin
must extend the Plugin abstract class and most likely implement one or more of the
extension interfaces to offer its contribution to the engine.

6.2 The CoreASM Engine

In this section we briefly look into the implementation of the kernel (focusing on the
more challenging components, the Abstract Storage and the Parser) and the plugin
framework.

6.2.1 The Kernel

CoreASM engine is represented by the CoreASMEngine interface and is implemented
by the Engine class file which serves two purposes: (i) it provides an implementa-
tion for the interface of the engine to its outside environment, and (ii) it acts as a
container for the main components of the engine and maintains the control state of

143

6. Implementing CoreASM CoreASM Documentation

Figure 6.2: Components of the CoreASM Engine

the CoreASM engine. In order for the engine to be always responsive to its envi-
ronment, the Engine object runs in two parallel processing threads: one, being the
environment or the caller’s thread, responds to requests from the environment (such
as sending commands, setting engine properties, or retrieving updates) and the other
one maintains the internal control flow of the engine.

The Abstract Storage

The Abstract Storage is implemented by more than three dozen classes in the package
org.coreasm.engine.absstorage. A hierarchy of classes implement various types
of elements defined in the kernel (see Figure 6.3). At the root of this hierarchy, we
have the Element class which is the superclass of all the values in CoreASM states,
implementing the Element domain. Following the specification of Section 4.1, every
instance of Element has a background and a notion of equality. Three immediate
subclasses BooleanElement, RuleElement, and FunctionElement respectively im-
plement the domains of BooleanElement, Rule, and FunctionElement defined in
Section 4.1. The domain of BackgroundElement and UniverseElement are im-
plemented by similarly named subclasses of a more generic class AbstractUniverse
which captures similar aspects of these two domains. Since only a finite set of ele-
ments can be represented by Universe elements, UniverseElement also implements
the Enumerable interface.

The main class of this package is HashStorage, which offers an implementation
for the Java interface AbstractStorage based on hash tables. The CoreASM state
is implemented by the Java class HashState through three separate mappings of
names (Java String values) to Function elements (instances of FunctionElement),
Rule elements (instances of RuleElement), and Background and Universe elements

144

6. Implementing CoreASM CoreASM Documentation

Figure 6.3: Core Elements Defined in the Abstract Storage

145

6. Implementing CoreASM CoreASM Documentation

(instance of AbstractUniverse), thereby implementing contents of CoreASM state
as defined in Section 4.1:

stateFunction : State × Name 7→ FunctionElement

stateRule : State × Name 7→ Rule

stateUniverse : State × Name 7→ UniverseElement

The Parser

Implementing the parser component of the CoreASM engine was quite a challenge.
At first, we were looking for fast and efficient parser generators that can be called
upon loading a specification to generate a parser based on the grammar provided
by the specific plugins that are used in that specification. Originally, we used the
OOPS (Object Oriented Parser System) parser generator4 developed and maintained
by Axel-Tobias Schreiner and his students Bernd Kühl and William Leiserson. The
original OOPS parser generator was quite restrictive for CoreASM as it would generate
only LL(1) parsers. Later, Will Leiserson extended and improved OOPS into an LL(k)
parser generator [60]. However, the new parser generator was not fast enough on
typical CoreASM specifications to be used every time a specification is being loaded.

We looked into a number of available open source parser generators in search of
an efficient LL(k) parser generator written in Java and we eventually found jparsec,5

a recursive-descent parser combinator framework written for Java. In contrast to
traditional parser generators like YACC or ANTLR, jparsec grammar is written in
native Java language and is defined in terms of special Java instances of a Parser
class. Each parser object represents a grammar rule and can be combined with other
parser objects to create more complex production rules. For example, a production
rule of the form “A ::= B | C | D” can be created by the following Java code:

Parser<Foo> a = Parsers.or(b, c, d);

where b, c, and d are parser instances representing the non-terminals B, C, and D
in our production rule. In jparsec, once a parser object is created, it can be asked to
“parse” a given input:

a.parse("text to be parsed");

Depending on how the parsers are defined, the return value (the result of parsing)
can be a value resulting from a calculation or an abstract syntax tree representing
the input text.

This feature of jparsec appeared to be very beneficial for CoreASM. Upon loading
a specification, the kernel provides references to the core parser objects (such as white
spaces, identifiers, terms, etc.)6 and make them available for plugins to build upon.

4http://www.cs.rit.edu/~ats/
5http://jparsec.codehaus.org
6Some of these core parsers, such as the one for parsing CoreASM terms, can also be extended by

plugins.

146

http://www.cs.rit.edu/~ats/
http://jparsec.codehaus.org

6. Implementing CoreASM CoreASM Documentation

Figure 6.4: CoreASM Plugin Interfaces

Plugins in turn provide their contributions to the parser in form of new jparsec parser
objects. The kernel then puts all these contributions together to create the final
parser that will be used to parse the specification.

6.2.2 CoreASM Plugins

Every CoreASM plugin must extend the abstract class Plugin and most likely imple-
ments at least one of the nine plugin interfaces offered by the engine (see Figure 6.4).7

We introduced the seven most important plugin interfaces in Section 4.5; the remain-
ing two are the PackagePlugin and the UndefinedIdentifierHandler interface.
The former should be implemented by plugins that are defined to serve as a “pack-
age” of other plugins. For example, CoreASM comes with a Standard Plugin which
is a plugin that implements only the PackagePlugin interface and when loaded (see
LoadSpecPlugins on page 34) provides a list of plugins that it consists of. The latter
one, UndefinedIdentifierHandler, is implemented by plugins that offer a mecha-
nism to deal with undefined identifiers. For example, a plugin can implement this
interface and override the default behavior of the engine and generate an error when-
ever an undefined identifier is recognized by the engine; see Section 4.2.2 and the
definition of the rule HandleUndefinedIdentifier in Section A.2.

A CoreASM plugin is most likely accompanied by a number of auxiliary Java
classes. As a result, every CoreASM plugin is expected to be packed into a single JAR

7Even if a plugin does not implement any of the plugin interfaces, it is still a valid plugin as
long as it properly extends the Plugin class. However, the effect of loading such a plugin would be
extremely limited.

147

6. Implementing CoreASM CoreASM Documentation

file8 together with an identification file. When an instance of Engine is initialized,
it searches a specific plugin folder, creates a catalog of available plugins (abstractly
modeled by the LoadCatalog rule on page 32) and loads the plugin class files together
with their corresponding classes into the Java Virtual Machine (JVM), so that they
can be later instantiated if needed. As a result, to add a new plugin to CoreASM,
one only needs to put the JAR file of the compiled plugin into the plugin folder of
the engine.

6.3 User Interfaces and Tools

The CoreASM engine is implemented as a Java component and requires a driver
program (such as a user interface) to run the engine, e.g., to pass specification files to
the engine and to control its simulation run by manipulating parameters. There are
currently two user interfaces available for the CoreASM engine: a powerful command-
line tool called Carma, and a graphical interactive development environment in the
Eclipse platform, known as the CoreASM Eclipse Plugin.

Carma

Carma is a comprehensive command-line user interface for CoreASM that offers rich
control over the runs of the engine through more than a dozen command-line options
and switches. To execute a specification, users can simply run Carma on the com-
mand line and pass it the name of the specification file as an argument. By default,
Carma does not have a termination condition, but it offers a number of termination
conditions, such as termination after a number of steps, termination on empty up-
dates, and termination when there is no valid agent with a defined program. As an
example, the following command runs the CoreASM specification MySpec.coreasm
using Carma and stops after 30 steps or after a step that generates empty updates; it
also provides a print-out of the final state before termination.

carma --steps 30 --empty-updates --dump-final-state MySpec.coreasm

The CoreASM Eclipse Plugin

The CoreASM Eclipse Plugin is a graphical interactive development environment for
CoreASM in form of a plugin for the well-known Eclipse software development plat-
form. The IDE provides various options to control execution of CoreASM specifi-
cations. The plugin extends the Eclipse platform to support dynamic syntax high-
lighting and interactive execution of CoreASM specifications. Since the language of
CoreASM for a given specification is defined by the set of plugins used by that specifi-
cation, with every change to the specification, the editor component of the CoreASM

8JAR (Java Archive) files are package files that are used by software developers to distribute Java
classes and their associated metadata.

148

6. Implementing CoreASM CoreASM Documentation

Eclipse Plugin passes the specification to the CoreASM engine and gets the set of
plugins that are used by the specification. The editor then asks the plugins for the
set of keywords, functions, universes and backgrounds they provide and uses this
information to offer a dynamic syntax highlighting of the specification.

Figure 6.5(a) shows a snapshot of the CoreASM environment in Eclipse. At the
top left corner (1), the toolbar is extended to include buttons to pause, resume
and stop a simulation run. The editor (2) provides dynamic syntax highlighting for
CoreASM specifications based on the set of CoreASM plugins used in the specification.
A configurable output console (3) provides a print-out of the results of the simulation
with optional additional information on the simulation process and the state of the
simulated machine.

6.3.1 CSDe

The Control State Diagram editor (CSDe), under development by Piper J. Jack-
son [31], is a sophisticated tool for creating and modifying Control State ASMs and
translating them into CoreASM specifications. The tool is implemented as a plugin for
the Eclipse software development platform. The plugin allows the user to work with
Control State Diagrams (CSDs) using a point-and-click schema (see Figure 6.5(b)).

The simplicity of control state diagrams and the intuitiveness of the graphical
user interface work together to allow users to confidently contribute to the design,
regardless of their technical background. The diagram editor (CSDe) is capable of
automatically transforming diagrams into CoreASM specifications. Since control state
diagrams do not necessarily include initial states of the system or other more concrete
information required for machine execution, such specifications may not be directly
executable. However, they provide an abstract structure for the design of systems
and act as foundations for further development of the specifications. The automatic
translation feature facilitates the transition from high-level design ideas expressed in
graphical form towards abstract yet relatively more concrete specifications.

6.3.2 Model Checking CoreASM Specifications

The CoreASM engine facilitates experimental validation of ASM models by providing
the means to execute abstract specifications and to explore behavioral aspects in
an interactive fashion. However, experimental validation without model checking
cannot formally verify the correctness of a system with respect to all of its possible
behaviors. In order to provide model checking support for CoreASM, George Ma
developed a tool called CoreASM2Promela [62] that utilizes the CoreASM engine to
translate CoreASM models into equivalent Promela models which can be verified using
the Spin model checker.9 From a high level perspective, the steps in the translation
and verification process are as follows: (i) a CoreASM specification is loaded and

9Spin is a widely used automata based model checker that has been used extensively in the design
of asynchronous distributed systems [53].

149

6. Implementing CoreASM CoreASM Documentation

1

3
2

(a) CoreASM Eclipse Plugin

(b) CSDe: A Control State Diagram editor for CoreASM

Figure 6.5: CoreASM Tools in Eclipse

150

6. Implementing CoreASM CoreASM Documentation

parsed by the CoreASM engine, producing an abstract syntax tree; (ii) the tree is
translated into Promela; (iii) Spin is invoked to generate a verifier of the Promela
model, producing C code; (iv) the C code is compiled, generating a custom verifier
of the CoreASM specification; (v) the verifier is run, producing a counter example if
the property being checked does not hold.

In order to properly translate CoreASM specifications into Promela models, we
needed to extend the CoreASM language by two new plugins, namely the Signature
Plugin (see Section 5.4.1) and the Property Plugin, to support declaration of function
signatures and specification of LTL properties as part of CoreASM specifications.
The Property Plugin is a small plugin that allows correctness properties, expressed
as LTL formulas, to be included in the header of a CoreASM specification. Presently,
specified properties do not have any meaning during ASM simulations (although it
may be possible to extend the Property plugin to check simple global assertions).
Correctness properties are only applicable during model checking, and are translated
by our CoreASM to Promela translator.

The Property plugin provides the following pattern to declare new LTL properties:

[check] property LTL-property

Including the keyword check with a property declaration indicates that the property
should be checked during model checking.

Since Spin does not allow LTL properties to be included directly in a specification,
the Property plugin was developed to improve the usability of the model checker. In
Spin, properties are defined by describing the behavior of a property automaton.
Moreover, Spin only allows a single property automaton in each model, while the
Property plugin allows multiple properties to be specified for a single specification.

George Ma has successfully used CoreASM2Promela to model check several non-
trivial ASM specifications; the details of the case studies and a comprehensive dis-
cussion of the results are presented in George Ma’s M.Sc thesis [62]. However, there
are certain limitations in model checking abstract ASM specifications using Spin. For
example, as Spin can only check finite models, the translation scheme is limited to
CoreASM specifications which have finite states. Thus, the translation supports only
static universes and enumerated backgrounds.

151

Chapter 7

Conclusions and Perspectives

This work presented the design and development of the CoreASM modeling framework
and tool environment for high-level design and analysis of abstract state machine
models. The CoreASM engine forms the kernel of a novel environment for model-
based engineering of abstract operational requirements and design specifications at
the early phases of the software design and development process. Focusing on free-
dom of experimentation and design exploration, CoreASM offers a flexible modeling
environment that facilitates writing of easily modifiable, concise and understandable
formal specifications by minimizing the need for encoding of domain concepts into
the constructs of the language.

In order to minimize the cost of such encoding, the CoreASM language and tool
architecture are both designed to be easily extensible so that they can be customized
for specific application contexts, thus realizing domain-specific ASM dialects. The
ASM literature contains many examples of using such ASM dialects: many published
specifications of large systems have introduced background elements or non-standard
rule forms that were well suited to express the intended behavior at an appropriate
level of abstraction in the given domain. By similarly allowing the customization of
the CoreASM language, we provide the benefits of executable specifications without
loosing the expressiveness of a domain-specific language, and avoid the introduction
of a further encoding level between the conceptual specification and its executable
version.

The design of the CoreASM engine is formally specified in ASMs. The entire
lifecycle of the CoreASM engine is defined as an extensible control-state ASM and the
CoreASM language is formally defined through the specification of an interpreter (in
the form of an abstract state machine) that ensures the executability of the language
and provides its formal semantics.

CoreASM has been recognized by the ASM community and has been used by vari-
ous research groups in Europe, Asia, and North America [61, 1, 4, 56, 63, 23].1 Based

1To name a few, CoreASM has been applied in a number of research projects at the Computer
Science Department of the University of Pisa in Italy, the Embedded Software Laboratory at the

152

7. Conclusions and Perspectives CoreASM Documentation

on solid experience gained through the practical use of CoreASM in a number of di-
verse application domains (see Chapter ??), we claim that CoreASM serves practical
needs of high-level modeling and rapid prototyping of complex distributed systems
and will be an asset for industrial engineering of complex software systems by making
software specifications and designs more robust and reliable. Prior to actually build-
ing a system, CoreASM specifications facilitate development of concise blueprints for
intuitive reasoning about key system attributes, supporting requirements specifica-
tion, design analysis, validation and (where appropriate) formal verification of system
properties.

7.1 Significance of the Contribution

Among all the existing ASM tool environments, CoreASM stands out as being the
closest to the spirit of abstract state machines [20]. Here, we summarize the most
significant features that distinguish it from other ASM tools.

A Rich ASM Language and Framework

CoreASM offers a rich ASM language with a syntax that closely follows the pseudo-
code style of ASMs and a formally defined semantics that is faithful to the original
ASM semantics as defined in [20]. CoreASM is the first ASM tool environment that
directly supports distributed ASM computation models with custom scheduling poli-
cies. Its language supports classes of basic, distributed, and Turbo ASMs, making it
the most comprehensive ASM language available.

Encouraging Rapid Prototyping

The CoreASM language is an untyped language with a minimal yet human-readable
syntax that facilitates writing abstract and untyped models which can be refined
into more concrete versions as needed. Thus, it encourages rapid prototyping of
abstract machine models for testing and design space exploration, and facilitates agile
software development [42]. An independent study performed by Jensen et al. [56],
comparing the abstraction level of specifications written in CoreASM and AsmL2,
shows that the CoreASM language can be used to specify algorithms in a higher level
of abstraction compared to AsmL. In their example of a data clustering algorithm,
the CoreASM description of the algorithm is 82 lines, almost half the size of the 155
lines of AsmL description of the same algorithm (see [56, Fig. 4]). The authors
conclude that compared to AsmL, CoreASM is more suited for the early stages of
software engineering.

RWTH Aachen University in Germany, the Open Systems Development Group at the University of
Agder in Norway, and the Department of Computer Science and Engineering at the Anna University
in India.

2The executable ASM language developed by the Foundation of Software Engineering group at
Microsoft [66]

153

7. Conclusions and Perspectives CoreASM Documentation

Extensible Language and Architecture

The most significant feature of CoreASM is the extensibility of its language and mod-
eling environment. To reduce the cost of writing specifications, one has to minimize
the need for encoding in mapping the problem space to a formal model. This approach
usually leads to the design of domain-specific languages. The CoreASM extensibility
framework provides utmost flexibility for extending its language definition and exe-
cution engine in order to tailor it to the particular needs of virtually any conceivable
application context. This allows CoreASM to be used very much in the same way
ASMs were meant to be used.

An Open Framework

CoreASM is one of the few ASM tools that is implemented as an open framework.
Developed in Java—a platform independent, open source programming language—
and under an open source license, CoreASM can be modified, extended and improved
as needed by its user community. The CoreASM engine comes with a simple yet
comprehensive API that offers full access to the states of simulated machines and
complete control over the execution of CoreASM specifications, and as such facilitates
the integration of CoreASM as an ASM simulator component into other applications.

7.2 Future Work

The CoreASM project is in continuous development. Currently, the execution engine
can execute standard ASM specifications; various plugins offer common backgrounds
such as numbers, sets, strings, and lists, and more specialized plugins offer sophis-
ticated features such as the JASMine plugin for interfacing ASM specifications with
Java class libraries (see Section 5.5).

However, there are a number of open issues that have not been yet sufficiently
addressed by the CoreASM project. In this section we review some of these issues
and discuss them as possible subjects of future work.

Debugging Features

Traditional debugging models of programming (e.g. step by step execution of instruc-
tions) do not suit ASMs. There is no such concept as the “current” instruction, nor
an explicit notion of “stepping” over instructions. However, similar notions can be
applied to computation steps of ASMs instead.

For example, a debugging user interface can offer, after every step of simulation,
the option of browsing the ASM program as a tree of rule constructs annotated with
the most recently generated update multisets produced by the rules. Such a feature
would allow users to investigate the changes (updates) produced by different parts of
ASM programs at desired levels of detail.

154

7. Conclusions and Perspectives CoreASM Documentation

The CoreASM engine provides the necessary services (such as step-by-step execu-
tion of the engine, full access to the simulated state, and the possibility of applications
to intervene in the execution process of the engine) supporting the implementation of
various debugging features by a CoreASM user interface. Non-trivial debugging fea-
tures, however, are not yet implemented in any of the currently available CoreASM
user interfaces.

Type System

The CoreASM language is designed as a primarily typeless language to encourage
rapid prototyping of abstract specifications. Although dynamic types are attached
to every CoreASM value (element) and various primitive and complex data types are
provided by plugins (see sections 5.2 and 5.3), there is no concept of static typing or
a type system defined in the kernel of CoreASM. State locations (a more generalized
notion of programming variables) are essentially typeless and there is no type-checking
offerred by the CoreASM kernel.

The Signature plugin (see Section 5.4.1) extends the CoreASM language and the
engine by offering a means to define type signatures for state locations. It also
provides runtime type checking on function calls and on updates to locations for which
a signature is defined. However, much more can be done in this domain. For example,
collection plugins could be improved to offer parameterized type constructors and
the Signature plugin could be extended to offer static type analysis of fully-typed
specifications, a practical requirement for model checking of CoreASM specifications.

Literate Specifications

Following the idea of literate specifications [57] (an extension of Knuth’s literate pro-
gramming technique [59]), it would be beneficial to integrate facilities for writing
CoreASM specifications into various document preparation systems such as OpenOf-
fice Writer3 or the LATEX typesetting system4. Such an integration would facilitate the
development of compound system documents, consisting of executable specifications
and system documentations, that not only provide formal specification of systems,
but also offer design rationale and necessary explanation on how such systems work.

The current implementation of CoreASM can import specifications from OpenOf-
fice Writer documents and the Carma user interface (see Section 6.3) can load and
execute OpenOffice Writer documents containing CoreASM fragments. The CoreASM
engine could be extended to also support import and export of specifications to and
from LATEX documents.5

3http://www.openoffice.org/
4http://www.latex-project.org/
5A basic CoreASM-to-LATEX export feature has already been implemented in Carma which has

been used to produced the color-annotated specification of Appendix B.1.

155

http://www.openoffice.org/
http://www.latex-project.org/

7. Conclusions and Perspectives CoreASM Documentation

Integrated Development Environment

The CoreASM IDE, a combination of the CoreASM Eclipse plugin and the CSD edi-
tor (see Section 6.3), is still in early development. We envision further improvements
providing debugging features (discussed above) and enhanced coding assistance fea-
tures, such as easy navigation between different layers of abstraction and refinements,
which would be of real value in building complex models.

Verification and Model Checking

A proper formal specification facilitates establishing the validity of the initial for-
malization step, which itself is a prerequisite for any meaningful approach to formal
verification. However, the only machine-assisted verification supported by the current
implementation of CoreASM is in the form of rudimentary model checking (see [62]
and Section 6.3.2). More sophisticated interfaces to existing model checking tools are
needed to fully exploit the potential they provide.

Automatic Code and Test Case Generation

There is currently no support for automatic code generation from CoreASM models.
The CoreASM engine is reasonably fast and efficient for interactive modeling and
experimental validation; nonetheless, there is room for improving performance by
generating Java or C++ code from CoreASM specifications. Automatic test case
generation for conformance testing, comparable to AsmL Spec Explorer [73], is a
work in progress independent of our work.

156

Appendices

157

Appendix A

Supplementary Definitions

A.1 Abstract Storage

• PushState puts the current state in the stack. We assume that stackstate is
empty in the initial state.

PushState ≡
Push(stackstate, state)

• PopState retrieves the state from the top of the stack, thus discarding the
current state.

PopState ≡
state := top(stackstate)
Pop(stackstate)

• Apply(u) applies the updates in the update set u to the current state.

Apply(u) ≡
forall (l, v) ∈ u do

SetValue(l, v)

• ClearState resets state to an empty state.

ClearState ≡
let s = new(State) in

state := s

• newElement : Element

returns a new element; i.e., imports a new element into the state and returns
the imported element. This function is defined as follows:

newElement ≡ new(Element)

158

A. Supplementary Definitions CoreASM Documentation

• inconsistentUpdates : Set(Update) 7→ Set(Update)

returns the set of inconsistent updates (according to [20, Def. 2.4.5]) in the
given update set. We assume that the update set consists of regular updates
only (i.e. actions are updateAction).

inconsistentUpdates(uset) ≡ {(l, v, a) ∈ uset | ∃(l′, v′, a′) ∈ uset, l = l′∧v 6= v′}

• isConsistent : Set(Update) 7→ Boolean

returns true if the update set is consistent according to [20, Def. 2.4.5]. We
assume that the update set consists of regular updates only (i.e. actions are
updateAction).

isConsistent(uset) ≡ |inconsistentUpdates(uset)| > 0

• isUniverseName : Name 7→ Boolean

isUniverseName(name) ≡ universes(state,name) 6= undef

• isFunctionName : Name 7→ Boolean

isFunctionName(name) ≡ functions(state,name) 6= undef

• isRuleName : Name 7→ Boolean

isRuleName(name) ≡ rules(state,name) 6= undef

A.2 Interpreter

• ClearTree(t) clears the given tree from any assigned value, location, or updates.

ClearTree(α) ≡
if α 6= undef then

value(α) := undef
update(α) := undef
loc(α) := undef
ClearTree(first(α))
ClearTree(next(α))

• CopyTree(t, setNext) creates a copy of the given tree, without copying assigned
values, locations, or updates. If setNext is true, it also copies the next sibling
of the given root node.

159

A. Supplementary Definitions CoreASM Documentation

CopyTree(α, setNext) ≡
if α 6= undef then

let n = new(Node) in
class(n) := class(α)
pattern(n) := pattern(α)
token(n) := token(α)
grammarRule(n) := grammarRule(α)
plugin(n) := plugin(α)
first(n) := CopyTree(first(α), true)
if setNext then

next(n) := CopyTree(next(α), true)
result := n

else
result := undef

• CopyTreeSub(α, 〈x1, . . . , xn〉, 〈λ1, . . . , λn〉) returns a copy of the given parse tree
α, where every instance of a parameter node xi is substituted by a copy of
the corresponding argument λi. We assume that the elements in the formal
parameters list (xi’s) are all distinct. Also, formal parameters substitution is
applied only to occurrences of formal parameters in the original tree passed as
argument, and not also on the actual parameters themselves.

CopyTreeSub(α, 〈x1, . . . , xn〉, 〈λ1, . . . , λn〉) ≡
if α 6= undef then

if class(α) = Id ∧ ∃i s.t. token(α) = xi then
result← CopyTree(λi, false)

else
let n = new(Node) in

first(n)← CopyTreeSub(first(α), 〈x1, . . . , xn〉, 〈λ1, . . . , λn〉)
next(n)← CopyTreeSub(next(α), 〈x1, . . . , xn〉, 〈λ1, . . . , λn〉)
class(n) := class(α)
pattern(n) := pattern(α)
token(n) := token(α)
grammarRule(n) := grammarRule(α)
plugin(n) := plugin(α)
result := n

else
result := undef

• HandleUndefinedIdentifier(pos, x, args) asks all the plugins registered to handle
undefined identifiers to evaluate the node with the undefined identifier (pos). It
is considered an error if more than one plugin evaluates the undefined identifier
with different results. If none of the plugins could evaluate the node, KernelHan-
dleUndefIdentifier will be called to create a new function element with a default
value of undefe for the given arguments.

160

A. Supplementary Definitions CoreASM Documentation

HandleUndefinedIdentifier(pos, x, args) ≡
local results [results := {}] in

seq
foreach p in loadedPlugins do

seqblock
ClearTree(pos)
PluginHandleUndefIndentifier(p, pos, x, args)
if evaluated(pos) then

add 〈p, loc(pos), updates(pos), value(pos)〉 to results
endseqblock

next
if |results| = 0 then

KernelHandleUndefIdentifier(pos, x, args)
else

choose 〈p, l, u, v〉 in results with ∃〈p′, l′, u′, v′〉 ∈ results, 〈l, v, u〉 6= 〈l′, v′, u′〉 do
Error(‘There is an ambiguity in resolving the identifier.’)

ifnone
[[pos]] := (l, u, v)

A.3 Scheduler

• updateInstructions : Multiset(Update)

is the multiset of accumulated update instructions in the current computation
step.

• updateSet : Set(Update)

is the set of (aggregated) updates in last computation step.

• selectedAgentsSet : Set(Element)

is the set of selected agents contributing to the computation of the current step.

• initAgent : Element

is the initial agent the engine creates to run the init rule.

• chosenAgent : Element

is the currently running (or to be running) agent.

• chosenProgram : Rule

is the rule element that represents the program of the chosen agent. The value
of this function is set by the Abstract Storage.

• morePossibleSetsExist : Boolean

holds true if there are more possible combinations of agents that can contribute
to the current computation step.

161

A. Supplementary Definitions CoreASM Documentation

• isSingleAgentInconsistent : Boolean

holds true if the last inconsistent set of updates is produced by a single agent.

isSingleAgentInconsistent ≡
∃a ∈ Element, ∃l ∈ Location,∀u1, u2 ∈ updateSet,

uiLoc(u1) = uiLoc(u2) ∧ uiAgents(u1) = uiAgents(u2) = {a}

• LoadSchedulingPolicy, based on the set of loaded plugins, loads a scheduling
policy for scheduling of agents in every computation step.

LoadSchedulingPolicy ≡
let policies = {pluginSchedulingPolicy(p) | p ∈ specPlugins ∧ isPolicyPlugin(p)}\{undef} in

if |policies| = 0 then
schedulingPolicy := undef

else
if |policies| = 1 then

choose policy ∈ policies do
schedulingPolicy := policy
schedulingGroup := newSchedulingGroup(policy)

else
Error(‘Conflicting scheduling policies.’)

A.4 Control API

The following functions and rules define the interface of the engine to its environment.

• specification : Spec

is the current CoreASM specification loaded by the engine.

• pluginCatalog : Set(Plugin)

is the set of all the plugins available to the engine.

• loadedPlugins : Set(Plugin)

is the set of loaded plugins by the engine.

• grammarRules : Set(GrammarRule)

is the set of all the grammar rules provided by the kernel and loaded plugins.

• isStateInitialized : Boolean

holds true if the simulation state is initialized.

• stepCount : Number

is the simulation step counter.

• state : State

holds the current simulation state.

162

A. Supplementary Definitions CoreASM Documentation

• agentSet : Set(Element)

is the set of all the available agents in the current state retrieved from the
Abstract Storage at the beginning of every computation step.

• engineProperties : Name 7→ Name

holds all the defined engine properties and their values. The behavior of the
engine (and its plugins) can be customized by these properties.

• engineMode : EngineMode

returns the current execution mode of the engine.

• isEngineBusy : Boolean

isEngineBusy ≡ engineMode 6∈ {Idle,Error}

• UpdateState(updates), if ¬isEngineBusy, updates the current state by applying
the given set of updates.

• Step puts a step command in the command queue of the engine.

A.5 Plugins

A.5.1 Choose Rule Plugin

Choose Rule

L choose αx in β
e
e doγ

e
r M → pos := β

L choose αx in βv doγ
e
r M → if enumerable(v) then

let s = enumerate(v) in
if |s| > 0 then

choose t ∈ s do
AddEnv(x, t)

pos := γ
else

[[pos]] := (undef, {||}, undef)
else

Error(‘Cannot choose from a non-enumerable element.’)
L choose αx in βv doγu M → RemoveEnv(x)

[[pos]] := (undef, u, undef)

163

A. Supplementary Definitions CoreASM Documentation

Choose Rule

L choose αx in β
e
e 1 with γ

e
e 2 doδ

e
r M →

pos := β
considered(β) := {}

L choose αx in βv1 with γ
e
e 2 doδ

e
r M →

if enumerable(v1) then
let s = enumerate(v1)\considered(β) in

if |s| > 0 then
choose t ∈ s do

AddEnv(x, t)
considered(β) := considered(β) ∪ {t}

pos := γ
else

[[pos]] := (undef, {||}, undef)
else

Error(‘Cannot choose from non-enumerable element’)

L choose αx in βv1 with γv2 doδ
e
r M → if v2 = truee then

pos := δ
else

pos := β
RemoveEnv(x)
ClearTree(γ)

L choose αx in βv1 with γv2 doδu M → RemoveEnv(x)
[[pos]] := (undef, u, undef)

164

A. Supplementary Definitions CoreASM Documentation

Choose Rule

L choose αx in β
e
e 1 with γ

e
e 2 doδ

e
r ifnone ε

e
r M → pos := β

considered(β) := {}
L choose αx in βv1 with γ

e
e 2 doδ

e
r ifnone ε

e
r M →

if enumerable(v1) then
let s = enumerate(v1)\considered(β) in

if |s| > 0 then
choose t ∈ s do

AddEnv(x, t)
considered(β) := considered(β) ∪ {t}

pos := γ
else

pos := ε
else

Error(‘Cannot choose from non-enumerable element’)
L choose αx in βv1 with γv2 doδ

e
r ifnone ε

e
r M → if v2 = truee then

pos := δ
else

pos := β
RemoveEnv(x)
ClearTree(γ)

L choose αx ∈ βv1 with γv2 doδu ifnone ε
e
r M → RemoveEnv(x)

[[pos]] := (undef, u, undef)
L choose αx ∈ βv1 with γe2 doδ

e
r ifnone εu M → [[pos]] := (undef, u, undef)

A.5.2 Forall Rule Plugin

Forall Rule

L forall αx in β
e
e doγ

e
r M → pos := β

[[pos]] := (undef, {||}, undef)
considered(β) := {}

L forall αx in βv doγ
e
r M → if enumerable(v) then

let s = enumerate(v)\considered(β) in
if |s| > 0 then

choose t ∈ s do
AddEnv(x, t)
considered(β) := considered(β) ∪ {t}

pos := γ
else

Error(‘Cannot enumerate a non-enumerable element’)
L forall αx in βv doγu M → pos := β

RemoveEnv(x)
ClearTree(γ)
[[pos]] := (undef, updates(pos) ∪ u, undef)

165

A. Supplementary Definitions CoreASM Documentation

A.5.3 Predicate Logic Plugin

The and Operator

Predicate Logic Plugin: and

L α
e
? and β

e
? M

[400]
→ choose λ ∈ {α, β} with ¬evaluated(λ)

pos := λ
ifnone

if isBoolean(value(α)) ∧ isBoolean(value(β)) then
if (value(α) = truee) ∧ (value(β) = truee) then

[[pos]] := (undef, undef, truee)
else

[[pos]] := (undef, undef, falsee)

The or Operator

Predicate Logic Plugin: or

L α
e
? or β

e
? M

[350]
→ choose λ ∈ {α, β} with ¬evaluated(λ)

pos := λ
ifnone

if isBoolean(value(α)) ∧ isBoolean(value(β)) then
if (value(α) = truee) ∨ (value(β) = truee) then

[[pos]] := (undef, undef, truee)
else

[[pos]] := (undef, undef, falsee)

The xor Operator

Predicate Logic Plugin: xor

L α
e
? xor β

e
? M

[350]
→ choose λ ∈ {α, β} with ¬evaluated(λ)

pos := λ
ifnone

if isBoolean(value(α)) ∧ isBoolean(value(β)) then
if ((value(α) = truee) ∨ (value(β) = truee))∧

((value(α) = falsee) ∨ (value(β) = falsee)) then
[[pos]] := (undef, undef, truee)

else
[[pos]] := (undef, undef, falsee)

166

A. Supplementary Definitions CoreASM Documentation

The forall Universal Quantifier

Predicate Logic Plugin: forall

L forallαx in β
e
e holds γ

e
e M → pos := β

considered(β) := {}
L forallαx in βv holds γ

e
e M → if enumerable(v) then

let s = enumerate(v)\considered(β) in
if |enumerate(v)| > 0 then

if |s| > 0 then
choose t ∈ s do

AddEnv(x, t)
considered(β) := considered(β) ∪ {t}

pos := γ
else

[[pos]] := (undef, undef, truee)
else

[[pos]] := (undef, undef, truee)
else

Error(‘Cannot enumerate a non-enumerable element’)
L forallαx in βv holds γv M → if (value(γ) = truee) then

pos := β
else

[[pos]] := (undef, undef, falsee)
RemoveEnv(x)
ClearTree(γ)

167

A. Supplementary Definitions CoreASM Documentation

A.5.4 Set Plugin

Set Comprehension Variant 2

Set Plugin : Set Comprehension variant 2

L { αx | β1x1 in γ1
e
? 1, . . . ,

βnxn in γn
e
? n with δ

e
? } M →

if n ≥ 1 ∧ ∃j ∈ [1..n], x = xj then
choose i ∈ [1..n] with ¬evaluated(γi) do

pos := γj
ifnone

if sameNameTwoConstVar then
Error(‘No two constrainer variables may have the same name’)

else if ∃c ∈ [1..n],¬enumerable(value(γc)) then
Error(‘Constrainer variables may only be bound to enumerable elements’)

else if ∃c ∈ [1..n], |enumerate(value(γc))| = 0 then
[[pos]] := (undef, undef, newV alue(setBack))

else
newSet(pos) := {}
InitializeChooseConsideredCombos
pos := δ

else
Error(‘At least one constrainer variable must exist with the same name as the specifier’)

where
sameNameTwoConstVar ≡ ∃k ∈ [1..n], ∃l ∈ [1..n] k 6= l ∧ xk = xl

L { αx | β1x1 in γ1v1, . . . ,
βnxn in γnvn with δv} M →

seq
if value(δ) := truee then

choose i ∈ [1..n] with x = xi do
add env(xi) to newSet(pos)

next
if OtherCombosToConsider then

ChooseNextCombo
ClearTree(δ)
pos := δ

else
DestroyConsideredCombos
[[pos]] := (undef, undef, setElement(newSet(pos)))

Set Comprehension Variant 3
In the following set comprehension form, the guard is optional.

168

A. Supplementary Definitions CoreASM Documentation

Set Plugin : Set Comprehension variant 3

L { αx is ε
e
e | β1x1 in γ1

e
? 1, . . . ,

βnxn in γn
e
? n with δ

e
? } M →

if n ≥ 1 then
if ∀j ∈ [1..n], x 6= xj then

choose j ∈ [1..n] with value(γj) = undef do
pos := γj

ifnone
if sameNameTwoConstVar then

Error(‘No two constrainer variables may have the same name’)
else if ∃c ∈ [1..n],¬enumerable(value(γc)) then

Error(‘Constrainer variables may only be bound to enumerable elements’)
else if ∃c ∈ [1..n], |enumerate(value(γc))| = 0 then

[[pos]] := (undef, undef, newV alue(setBack))
else

newSet(pos) := {}
InitializeChooseConsideredCombos
pos := ε

else
Error(‘Constrainer variable cannot have same name as specifier’)

else
Error(‘At least one constrainer variable must be present’)

where
sameNameTwoConstVar ≡ ∃k ∈ [1..n], ∃l ∈ [1..n] k 6= l ∧ xk = xl

L { αx is ε
e
e | β1x1 in γ1v1, . . . ,

βnxn in γnvn with δv} M →
if value(δ) := truee then

pos := ε
else

if OtherCombosToConsider then
ChooseNextCombo
ClearTree(δ)
pos := δ

else
DestroyConsideredCombos

[[pos]] := (undef, undef, setElement(newSet(pos)))

169

A. Supplementary Definitions CoreASM Documentation

L { αx is εv | β1x1 in γ1v1, . . . ,
βnxn in γnvn with δv} M →

seq
add value(ε) to newSet(pos)

next
if OtherCombosToConsider then

ChooseNextCombo
ClearTree(δ)
ClearTree(ε)
pos := δ

else
DestroyConsideredCombos
[[pos]] := (undef, undef, setElement(newSet(pos)))

The Set Difference Operator

Set Plugin : difference

L α
e
? \β

e
? M

[650]
→ choose λ ∈ {α, β} with ¬evaluated(λ)

pos := λ
ifnone

if ∀x ∈ {l, r} SetElement(x) ∨ x = undefe then
if l = undefe ∨ r = undefe then

[[pos]] := (undef, undef, undefe)
else

let v = {x | x ∈ enumerate(l) ∧ x 6∈ enumerate(r)} in
[[pos]] := (undef, undef, setElement(v))

where
l ≡ value(α), r ≡ value(β)

The Set Union Operator

Set Plugin : union

L α
e
? ∪ β

e
? M

[650]
→ choose λ ∈ {α, β} with ¬evaluated(λ)

pos := λ
ifnone

if ∀x ∈ {l, r} SetElement(x) ∨ x = undefe then
if l = undefe ∨ r = undefe then

[[pos]] := (undef, undef, undefe)
else

let v = {x | x ∈ enumerate(l) ∨ x ∈ enumerate(r)} in
[[pos]] := (undef, undef, setElement(v))

where
l ≡ value(α), r ≡ value(β)

170

A. Supplementary Definitions CoreASM Documentation

A.5.5 Math Plugin

Most of the functions provided by the Math plugin are equivalent of their Java coun-
terparts defined in the Java library package java.lang.Math. For such functions,
we use the descriptions provided by the Java 2 Platform Standard Edition 5.0 API
Specification [72].

Constants

• MathE returns the Number element that is closer in value than any other to e,
the base of the natural logarithms.

• MathPI returns the Number element that is closer than any other to π, the
ratio of the circumference of a circle to its diameter.

Basic Functions

• abs(v) returns the absolute value of v.

• acos(v) returns the arc cosine of an angle, in the range of 0 through π.

• asin(v) returns the arc sine of an angle, in the range of −π/2 through π/2.

• atan(v) returns the arc tangent of an angle, in the range of −π/2 through
π/2.

• atan2(x, y) converts rectangular coordinates (x, y) to polar (r, θ) and returns
θ.

• cuberoot(v) returns the cube root of v.

• cbrt(v) returns the cube root of v.

• ceil(v) returns the smallest (closest to negative infinity) value that is greater
than or equal to the argument and is equal to a mathematical integer.

• cos(v) returns the trigonometric cosine of an angle.

• cosh(v) returns the hyperbolic cosine of v.

• exp(v) returns Euler’s number e raised to the power of v.

• expm1(v) returns ev − 1.

• floor(v) returns the largest (closest to positive infinity) value that is less than
or equal to the argument and is equal to a mathematical integer.

• hypot(x, y) returns
√
x2 + y2 without intermediate overflow or underflow.

171

A. Supplementary Definitions CoreASM Documentation

• IEEEremainder(v1, v2) Computes the remainder operation on two arguments
as prescribed by the IEEE 754 standard.

• log(v) returns the natural logarithm (base e) of v.

• log10(v) returns the base 10 logarithm of v.

• log1p(v) returns the natural logarithm of the sum of the argument and 1; i.e.,
ln(v + 1).

• max(v1, v2) returns the greater of two values.

• min(v1, v2) returns the smaller of two values.

• pow(x, y) returns the value of the first argument raised to the power of the
second argument.

• random() returns a random value with a positive sign, greater than or equal
to 0.0 and less than 1.0.

• round(v) returns the closest mathematical integer to the argument.

• signum(v) Returns zero if the argument is zero, 1.0 if the argument is greater
than zero, −1.0 if the argument is less than zero.

• sin(v) returns the trigonometric sine of an angle.

• sinh(v) returns the hyperbolic sine of v.

• sqrt(v) returns the correctly rounded positive square root of v; i.e.,
√
v.

• tan(v) returns the trigonometric tangent of an angle.

• tanh(v) returns the hyperbolic tangent of v.

• toDegrees(v) converts an angle measured in radians to an approximately
equivalent angle measured in degrees.

• toRadians(v) converts an angle measured in degrees to an approximately
equivalent angle measured in radians.

Special Functions

• powerset(set) computes the powerset of the given set.

• max({v1,...,vn}) returns the maximum value in a collection of numbers. If
there is one non-number in the collection, it returns undef.

• min({v1,...,vn}) returns the minimum value in a collection of numbers. If
there is one non-number in the collection, it returns undef.

172

A. Supplementary Definitions CoreASM Documentation

• sum({v1,...,vn}) returns the sum of a collection of numbers. If there is one
non-number in the collection, it returns undef.

• sum({v1,...,vn}, @f) returns the sum of a collection of numbers, after ap-
plying function f to the values in the collection. If there is one non-number in
the collection, it returns undef.

• powerset({e1,...,en}) returns the powerset of the given set of elements.

173

Appendix B

CoreASM Examples

B.1 The Railroad Crossing Example

CoreASM RailRoadCrossing

use StandardPlugins

use TimePlugin

use MathPlugin

enum Track = {track1, track2}
enum TrackStatus = {empty, coming, crossing}
enum GateSignal = {open, close}
enum GateState = {opened, closed}

function deadline : Track -> TIME

function trackStatus : Track -> TrackStatus

function gateSignal : -> GateSignal

function gateState : -> GateState

universe Agents = {trackController, gateController, observer, environment}

// Is it safe to open the guard?

derived safeToOpen = forall t in Track holds

trackStatus(t) = empty or (now + dopen) < deadline(t)

derived waitTime = dmin - dclose

init InitRule

rule InitRule = {

174

B. CoreASM Examples CoreASM Documentation

forall t in Track do {
trackStatus(t) := empty

deadline(t) := infinity

}
gateState:= opened

dmin:= 5000

dmax:= 10000

dopen:= 2000

dclose:= 2000

startTime:= now

program(trackController) := @TrackControl

program(gateController) := @GateControl

program(observer) := @ObserverProgram

program(environment) := @EnvironmentProgram

program(self) := undef

}

rule TrackControl = {
forall t in Track do {

SetDeadline(t)

SignalClose(t)

ClearDeadline(t)

}
SignalOpen

}

rule GateControl = {
if gateSignal = open and gateState = closed then gateState:= opened

if gateSignal = close and gateState = opened then gateState:= closed

}

rule SetDeadline(x) =

if trackStatus(x) = coming and deadline(x) = infinity then

deadline(x) := now + waitTime

rule SignalClose(x) =

if now >= deadline(x) and now <= deadline(x) + 1000 then

gateSignal:= close

rule ClearDeadline(x) =

if trackStatus(x) = empty and deadline(x) < infinity then

deadline(x) := infinity

175

B. CoreASM Examples CoreASM Documentation

rule SignalOpen =

if gateSignal = close and safeToOpen then

gateSignal:= open

// The observer

rule ObserverProgram =

seqblock

print "Time: " + ((now - startTime) / 1000) + " seconds"

forall t in Track do

print "Track " + t + " is " + trackStatus(t)

print "Gate is " + gateState

print ""

endseqblock

// The environment

rule EnvironmentProgram =

choose t in Track do {
if trackStatus(t) = empty then

if random < 0.05 then {
trackStatus(t) := coming

passingTime(t) := now + dmin

}

if trackStatus(t) = coming then

if passingTime(t) < now then {
trackStatus(t) := crossing

passingTime(t) := now + 4000

}

if trackStatus(t) = crossing then

if passingTime(t) < now then

trackStatus(t) := empty

}

B.2 The Surveillance Scenario

CoreASM Surveillance Scenario

176

B. CoreASM Examples CoreASM Documentation

use Standard

use Math

use Options

option Signature.NoUndefinedId strict

/* --- Universes --- */

enum Moves = {N, NW, W, WS, S, SE, E, EN}

enum Direction = {forward, away}
universe Agents = {agent1, agent2, environment}

/* --- Function Definitions --- */

// state of the environment

/* --- Function Definitions --- */

// state of the environment

function posX: Agents -> NUMBER

function posY: Agents -> NUMBER

function bearingError: Agents -> NUMBER

function rangeError: Agents -> NUMBER

function observationHistory: Agents -> LIST

function move:Agents -> NUMBER

function dir: Agents -> Direction

function bearingErrorRange: Agents -> NUMBER

function rangeErrorRange: Agents -> NUMBER

// --- Initial Rule ---

init InitRule

rule InitRule = {
program(agent1) := @Agent1Program

program(agent2) := @Agent2Program

program(environment) := @EnvironmentProgram

program(self) := undef

// initial positions of agents

posX(agent1) := 0

posY(agent1) := 0

posX(agent2) := 15

177

B. CoreASM Examples CoreASM Documentation

posY(agent2) := 10

dir(agent2) := forward

// setting error ranges

bearingErrorRange(agent1) := 3.14 / 20

rangeErrorRange(agent1) := 2

bearingErrorRange(agent2) := 3.14 / 20

rangeErrorRange(agent2) := 4

// initial values of agent functions

forall a in {agent1, agent2} do {
observationHistory(a) := []

bearingError(a) := 0

rangeError(a) := 0

}
}

// --- Agent Programs ---

rule Agent1Program = {
RecordObservation(agent2)

if isInAOI(agent2) then

SendMessage("Agent 2 is in the area of interest.")

if size(observationHistory(self)) > 1 then

if approaching(self) then

print "Agent 1: Agent 2 is approaching."

}

rule Agent2Program = {
RecordObservation(agent1)

if dir(self) = forward then

MoveToward(agent1)

else

MoveAwayFrom(agent1)

if tooClose(agent1) then

dir(self) := away

}

rule EnvironmentProgram =

forall a in {agent1, agent2} do {
bearingError(a) := bearingErrorRange(a) * (2 * random - 1)

rangeError(a) := rangeErrorRange(a) * (2 * random - 1)

178

B. CoreASM Examples CoreASM Documentation

}

// --- Auxiliary Rules ---

rule RecordObservation(a) =

add [obsRange(self, a), obsBearing(self, a)] to observationHistory(self)

rule SendMessage(msg) =

"SendMessage(" + msg + ")"

rule Move(dir) = {
print "agent1:(" + posX(agent1) + ", " + posY(agent1)

+ ") - agent2:(" + posX(agent2) + ", " + posY(agent2) +

")"

if dir = N then

posY(self) := posY(self) + 1

else if dir = S then

posY(self) := posY(self) - 1

else if dir = W then

posX(self) := posX(self) - 1

else if dir = E then

posX(self) := posX(self) + 1

else if dir = EN then {
Move(N)

Move(E)

}
else if dir = NW then {

Move(N)

Move(W)

}
else if dir = SE then {

Move(S)

Move(E)

}
else if dir = WS then {

Move(S)

Move(W)

}
}

/* Move towards agent ’a’ */

rule MoveToward(a) =

let dir = getDirection(

atan2(posX(agent1) - posX(self), posY(agent1) - posY(self))

179

B. CoreASM Examples CoreASM Documentation

+ (2 * random * bearingError(self) - bearingError(self))

) in

Move(dir)

/* Move away from agent ’a’ */

rule MoveAwayFrom(a) =

let nb = atan2(posX(agent1) - posX(self), posY(agent1) - posY(self))

+ (2 * random * bearingError(self) - bearingError(self))

- signum(atan2(posX(agent1) - posX(self),

posY(agent1) - posY(self))

+ (2 * random * bearingError(self) - bearingError(self)))

* MathPI in

Move(getDirection(nb))

// Compute a move direction based on the given bearing

rule getDirection(b) =

return move in

let bp = abs(b) in {
if bp < (MathPI / 8) then

move:= N

if abs(bp - MathPI / 4) < (MathPI / 8) then

if (b < 0) then

move:= EN

else

move:= NW

if abs(bp - MathPI / 2) < (MathPI / 8) then

if (b < 0) then

move:= E

else

move:= W

if abs(bp - (3 * MathPI / 4)) < (MathPI / 8) then

if (b < 0) then

move:= WS

else

move:= SE

if abs(bp - MathPI) < (MathPI / 8) then

move:= S

}

/* ----- Derived Functions ----- */

derived bearing(a) = atan2(posX(a) - posX(self), posY(a) - posY(self

))

180

B. CoreASM Examples CoreASM Documentation

derived range(a) =

sqrt(pow(posX(a) - posX(self), 2) + pow(posY(a) - posY(self

), 2))

derived obsBearing(observer, observed) =

bearing(observed) + bearingError(observer)

derived obsRange(observer, observed) =

range(observed) + rangeError(observer)

derived isInAOI(a) =

obsRange(self , a) > 5 and obsRange(self , a) < 12

and obsBearing(self , a) < (MathPI / 3)

and obsBearing(self , a) > (MathPI / 6)

derived tooClose(observed) =

obsRange(self , observed) < 12

derived approaching(observer) =

head(last(observationHistory(observer)))

< head(nth(observationHistory(observer),

size(observationHistory(observer)) - 1))

181

Appendix C

Change List

Since August 2009

• semantics of the operators offered by the following plugins is revised such that
in binary operators if both operands are undef or one is undef and the other
is a relevant value (depending on the plugin), the evaluation results in undef.
In unary operators if the operand is undef the result of the operation will be
undef. Of course, if other plugins evaluate the operation to a non-undef value,
the undef value is ignored and the non-undef value will be considered as the
value of the operation.

– Bag, List, Number, Predicate, Set, String

To Do Specification of operation evaluation in Kernel.

182

Bibliography

[1] M. Altenhofen, A. Friesen, and J. Lemcke. Asms in service oriented architectures. Jour-
nal of Universal Computer Science, 14(12):2034–2058, 2008.

[2] M. Anlauff. XASM – An Extensible, Component-Based Abstract State Machines Lan-
guage. In Y. Gurevich and P. Kutter and M. Odersky and L. Thiele, editor, Abstract
State Machines: Theory and Applications, volume 1912 of LNCS, pages 69–90. Springer-
Verlag, 2000.

[3] M. Anlauff and P. Kutter. eXtensible Abstract State Machines. XASM open source
project: http://www.xasm.org.

[4] Jörg Beckers, Daniel Klünder, Stefan Kowalewski, and Bastian Schlich. Direct support
for model checking abstract state machines by utilizing simulation. In ABZ ’08: Pro-
ceedings of the 1st international conference on Abstract State Machines, B and Z, pages
112–124, Berlin, Heidelberg, 2008. Springer-Verlag.

[5] B. Beckert and J. Posegga. leanEA: A Lean Evolving Algebra Compiler. In H. Kleine
Büning, editor, Proceedings of the Annual Conference of the European Association for
Computer Science Logic (CSL’95), volume 1092 of LNCS, pages 64–85. Springer, 1996.

[6] C. Beierle, E. Börger, I. Durdanovic, U. Glässer, and E. Riccobene. Refining Abstract
Machine Specifications of the Steam Boiler Control to Well Documented Executable
Code. In J.-R. Abrial, E. Börger, and H. Langmaack, editors, Formal Methods for
Industrial Applications. Specifying and Programming the Steam-Boiler Control, number
1165 in LNCS, pages 62–78. Springer, 1996.

[7] Daniel M. Berry. Formal Methods: the very idea—Some thoughts about why they work
when they work. Science of Computer Programming, 42(1):11–27, 2002.

[8] A. Blass and Y. Gurevich. Background, Reserve, and Gandy Machines. In P. Clote and
H. Schwichtenberg, editors, Computer Science Logic (Proceedings of CSL 2000), volume
1862 of LNCS, pages 1–17. Springer, 2000.

[9] Andreas Blass and Yuri Gurevich. Abstract State Machines Capture Parallel Algorithms.
ACM Transactions on Computation Logic, 4(4):578–651, 2003.

[10] E. Börger. A Logical Operational Semantics for Full Prolog. Part I: Selection Core and
Control. In E. Börger, H. Kleine Büning, M. M. Richter, and W. Schönfeld, editors,
CSL’89. 3rd Workshop on Computer Science Logic, volume 440 of LNCS, pages 36–64.
Springer, 1990.

183

http://www.xasm.org

BIBLIOGRAPHY CoreASM Documentation

[11] E. Börger. A Logical Operational Semantics of Full Prolog. Part II: Built-in Predicates
for Database Manipulation. In B. Rovan, editor, Mathematical Foundations of Computer
Science, volume 452 of LNCS, pages 1–14. Springer, 1990.

[12] E. Börger. The ASM ground model method as a foundation of requirements engineering.
In N.Dershowitz, editor, Verification: Theory and Practice, volume 2772 of LNCS, pages
145–160. Springer-Verlag, 2003.

[13] E. Börger. The ASM refinement method. Formal Aspects of Computing, 15:237–257,
2003.

[14] E. Börger, N. G. Fruja, V. Gervasi, and R. F. Stärk. A High-level Modular Definition
of the Semantics of C#. Theoretical Computer Science, 336(2/3):235–284, May 2005.

[15] E. Börger, U. Glässer, and W. Müller. The Semantics of Behavioral VHDL’93 De-
scriptions. In EURO-DAC’94. European Design Automation Conference with EURO-
VHDL’94, pages 500–505, Los Alamitos, California, 1994. IEEE CS Press.

[16] E. Börger, U. Glässer, and W. Müller. Formal Definition of an Abstract VHDL’93
Simulator by EA-Machines. In C. Delgado Kloos and P. T. Breuer, editors, Formal
Semantics for VHDL, pages 107–139. Kluwer Academic Publishers, 1995.

[17] E. Börger, P. Päppinghaus, and J. Schmid. Report on a Practical Application of ASMs
in Software Design. In Y. Gurevich and P. Kutter and M. Odersky and L. Thiele,
editor, Abstract State Machines: Theory and Applications, volume 1912 of LNCS, pages
361–366. Springer-Verlag, 2000.

[18] E. Börger, E. Riccobene, and J. Schmid. Capturing Requirements by Abstract State
Machines: The Light Control Case Study. Journal of Universal Computer Science,
6(7):597–620, 2000.

[19] E. Börger and W. Schulte. A Practical Method for Specification and Analysis of Excep-
tion Handling: A Java/JVM Case Study. IEEE Transactions on Software Engineering,
26(10):872–887, October 2000.

[20] E. Börger and R. Stärk. Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer-Verlag, 2003.

[21] G. Del Castillo. Towards Comprehensive Tool Support for Abstract State Machines. In
D. Hutter, W. Stephan, P. Traverso, and M. Ullmann, editors, Applied Formal Methods
— FM-Trends 98, volume 1641 of LNCS, pages 311–325. Springer-Verlag, 1999.

[22] G. Del Castillo, I. Durdanović, and U. Glässer. An Evolving Algebra Abstract Machine.
In H. Kleine Büning, editor, Proceedings of the Annual Conference of the European
Association for Computer Science Logic (CSL’95), volume 1092 of LNCS, pages 191–
214. Springer, 1996.

[23] Matteo Demuru. Modeling cell methabolic mechanisms through Abstract State Ma-
chines. Master’s thesis, University of Pisa, Italy, February 2008.

[24] D. Diesen. Specifying Algorithms Using Evolving Algebra. Implementation of Functional
Programming Languages. Dr. scient. degree thesis, Dept. of Informatics, University of
Oslo, Norway, March 1995.

184

BIBLIOGRAPHY CoreASM Documentation

[25] R. Eschbach, U. Gässer, R. Gotzhein, and A. Prinz. On the Formal Semantics of SDL-
2000: A Compilation Approach Based on an Abstract SDL Machine. In Y. Gurevich
and P. Kutter and M. Odersky and L. Thiele, editor, Abstract State Machines: Theory
and Applications, volume 1912 of LNCS, pages 242–265. Springer-Verlag, 2000.

[26] R. Eschbach, U. Glässer, R. Gotzhein, M. von Löwis, and A. Prinz. Formal Definition
of SDL-2000: Compiling and Running SDL Specifications as ASM Models. Journal of
Universal Computer Science, 7(11):1024–1049, 2001.

[27] R. Farahbod, V. Gervasi, and U. Glässer. Design and Specification of the CoreASM
Execution Engine. Technical Report SFU-CMPT-TR-2005-02, Simon Fraser University,
February 2005.

[28] R. Farahbod, V. Gervasi, and U. Glässer. CoreASM: An Extensible ASM Execution
Engine. Fundamenta Informaticae, pages 71–103, 2007.

[29] R. Farahbod and U. Glässer. Semantic Blueprints of Discrete Dynamic Systems: Chal-
lenges and Needs in Computational Modeling of Complex Behavior. In New Trends
in Parallel and Distributed Computing, Proc. 6th Intl. Heinz Nixdorf Symposium, Jan.
2006, pages 81–95. Heinz Nixdorf Institute, 2006.

[30] R. Farahbod, U. Glässer, É. Bossé, and A. Guitouni. Integrating Abstract State Machines
and Interpreted Systems for Situation Analysis Decision Support Design. In Proc. of the
11th Intl Conf. on Information Fusion (Fusion 2008), July 2008.

[31] R. Farahbod, U. Glässer, P. Jackson, and M. Vajihollahi. High Level Analysis, Design
and Validation of Distributed Mobile Systems with CoreASM. In Proceedings of 3rd
International Symposium On Leveraging Applications of Formal Methods, Verification
and Validation (ISoLA 2008). Springer, October 2008.

[32] R. Farahbod, U. Glässer, and M. Vajihollahi. Specification and Validation of the Business
Process Execution Language for Web Services. In Wolf Zimmermann and Bernhard
Thalheim, editors, Abstract State Machines 2004. Advances In Theory And Practice:
11th International Workshop (ASM 2004), Germany, March 2004. Springer-Verlag.

[33] R. Farahbod, U. Glässer, and M. Vajihollahi. A Formal Semantics for the Business Pro-
cess Execution Language for Web Services. In Savitri Bevinakoppa et al., editors, Web
Services and Model-Driven Enterprise Information Systems, pages 144—155, Portugal,
May 2005. INSTICC Press.

[34] R. Farahbod, U. Glässer, and M. Vajihollahi. Abstract Operational Semantics of the
Business Process Execution Language for Web Services. Technical Report SFU-CMPT-
TR-2005-04, Simon Fraser University, Feb. 2005. Revised version of SFU-CMPT-TR-
2004-03, April 2004.

[35] R. Farahbod, U. Glässer, and M. Vajihollahi. An Abstract Machine Architecture for
Web Service Based Business Process Management. International Journal of Business
Process Integration and Management, 1:279–291, 2007.

[36] R. Farahbod, U. Glässer, and H. Wehn. Dynamic Resource Management for Adaptive
Distributed Information Fusion in Large Volume Surveillance. In Proc. of SPIE Defense
& Security Symposium, March 2008.

[37] R. Farahbod, Uwe Glässer, and G. Ma. Model Checking CoreASM Specifications. In
A. Prinz, editor, Proceedings of the 14th International ASM Workshop (ASM’07), 2007.

185

BIBLIOGRAPHY CoreASM Documentation

[38] Roozbeh Farahbod. CoreASM: An Extensible Modeling Framework & Tool Environ-
ment for High-level Design and Analysis of Distributed Systems. PhD thesis, Si-
mon Fraser University, Burnaby, Canada, May 2009. http://roozbeh.ca/downloads/
RoozbehFarahbod-PhDThesis.pdf.

[39] Formal Methods laboratory of University of Milan. Asmeta, 2006. Last visited June
2008, http://asmeta.sourceforge.net/.

[40] Free Software Foundation. GNU Lesser General Public License, 2007. Available elec-
tronically at http://www.gnu.org/copyleft/lgpl.html (Last visited in March 2009).

[41] The Apache Software Foundation. Apache License, 2004. Available electronically at
http://www.apache.org/licenses (Last visited in March 2009).

[42] Martin Fowler. The New Methodology. April 2003.
http://martinfowler.com/articles/newMethodology.html.

[43] V. Gervasi and R. Farahbod. JASMine: Accessing java code from CoreASM. In Pro-
ceedings of the Dagstuhl Seminar on Rigorous Methods for Software Construction and
Analysis (LNCS Festschrift). Springer, 2009 (to be published).

[44] U. Glässer, R. Gotzhein, and A. Prinz. The Formal Semantics of SDL-2000: Status and
Perspectives. Computer Networks, 42(3):343–358, 2003.

[45] U. Glässer and Q.-P. Gu. Formal Description and Analysis of a Distributed Location
Service for Mobile Ad Hoc Networks. Theoretical Comp. Sci., 336:285–309, May 2005.

[46] U. Glässer, Y. Gurevich, and M. Veanes. Abstract Communication Model for Distributed
Systems. IEEE Trans. on Soft. Eng., 30(7):458–472, July 2004.

[47] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specification.
Prentice Hall, third edition, 2005.

[48] Y. Gurevich. Evolving Algebras. A Tutorial Introduction. Bulletin of EATCS, 43:264–
284, 1991.

[49] Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In E. Börger, editor, Specification
and Validation Methods, pages 9–36. Oxford University Press, 1995.

[50] Y. Gurevich and J. Huggins. Evolving Algebras and Partial Evaluation. In B. Pehrson
and I. Simon, editors, IFIP 13th World Computer Congress, volume I: Technol-
ogy/Foundations, pages 587–592, Elsevier, Amsterdam, the Netherlands, 1994.

[51] Y. Gurevich and N. Tillmann. Partial Updates: Exploration. Journal of Universal
Computer Science, 7(11):917–951, 2001.

[52] Y. Gurevich and N. Tillmann. Partial Updates. Journal of Theoretical Computer Science,
336(2-3):311–342, 2005.

[53] Gerard J. Holzmann. The Model Checker SPIN. IEEE Trans. Software Eng., 23(5):279–
295, 1997.

[54] J. Huggins. An offline partial evaluator for evolving algebras. Technical Report CSE-
TR-229-95, University of Michigan, 1995.

[55] ITU-T Recommendation Z.100 Annex F (11/00). SDL Formal Semantics Definition.
International Telecommunication Union, 2001.

186

http://roozbeh.ca/downloads/RoozbehFarahbod-PhDThesis.pdf
http://roozbeh.ca/downloads/RoozbehFarahbod-PhDThesis.pdf
http://asmeta.sourceforge.net/
http://www.gnu.org/copyleft/lgpl.html
http://www.apache.org/licenses

BIBLIOGRAPHY CoreASM Documentation

[56] Olav Jensen, Raymond Koteng, Kjetil Monge, and Andreas Prinz. Abstraction using
ASM Tools. In A. Prinz, editor, Proceedings of the 14th International ASM Workshop
(ASM’07), 2007.

[57] C. W. Johnson. Literate specifications. Software Engineering Journal, 11(4):225–237,
July 1996.

[58] A. M. Kappel. Executable Specifications Based on Dynamic Algebras. In A. Voronkov,
editor, Logic Programming and Automated Reasoning, volume 698 of Lecture Notes in
Artificial Intelligence, pages 229–240. Springer, 1993.

[59] Donald E. Knuth. Literate programming. Comput. J., 27(2):97–111, 1984.

[60] William Leiserson. Elegant, efficient LL (k) parser generation. PhD thesis, Rochester
Institute of Technology, Rochester, USA, 2006.

[61] Jens Lemcke and Andreas Friesen. Composing web-service-like abstract state machines
(asms). Services, IEEE Congress on, pages 262–269, 2007.

[62] George Z. Ma. Model Checking Support for CoreASM: Model Checking Distributed
Abstract State Machines Using Spin. Master’s thesis, Simon Fraser University, Canada,
May 2007.

[63] Daniele Mazzei, Federico Vozzi, Antonio Cisternino, Giovanni Vozzi, and Arti Ahluwalia.
A high-throughput bioreactor system for simulating physiological environment. IEEE
Transactions on Industrial Electronics, 55(9):3273–3280, 2008.

[64] Mashaal A. Memon. Specification language design concepts: Aggregation and exten-
sibility in coreasm. Master’s thesis, Simon Fraser University, Burnaby, Canada, April
2006.

[65] Microsoft Corp. Microsoft .NET Framework. Last visited Dec. 2006, http://www.
microsoft.com/net.

[66] Microsoft FSE Group. The Abstract State Machine Language, 2003. Last visited June
2008, http://research.microsoft.com/fse/asml/.

[67] W. Müller, J. Ruf, and W. Rosenstiel. An ASM Based SystemC Simulation Semantics. In
W. Müller et al., editors, SystemC - Methodologies and Applications. Kluwer Academic
Publishers, June 2003.

[68] Regents of the University of California. BSD Licenses, 1990-2009. Available electroni-
cally at http://en.wikipedia.org/wiki/BSD_licenses (Last visited in March 2009).

[69] Joachim Schmid. AsmGofer, 2008. Available electronically at
http://www.tydo.de/Doktorarbeit/AsmGofer/ (Last visited in July 2008).

[70] Thomas A. Standish. Extensibility in programming language design. SIGPLAN Not.,
10(7):18–21, 1975.

[71] R. Stärk, J. Schmid, and E. Börger. Java and the Java Virtual Machine: Definition,
Verification, Validation. Springer-Verlag, 2001.

[72] Sun Microsystems, Inc. The Java 2 Platform Standard Edition 5.0 API Specification.
Sun Microsystems, Inc., 2004. (http://java.sun.com/j2se/1.5.0/docs/api).

187

http://www.microsoft.com/net
http://www.microsoft.com/net
http://research.microsoft.com/fse/asml/
http://en.wikipedia.org/wiki/BSD_licenses
http://www.tydo.de/Doktorarbeit/AsmGofer/
http://java.sun.com/j2se/1.5.0/docs/api

BIBLIOGRAPHY CoreASM Documentation

[73] Margus Veanes, Colin Campbell, Wolfgang Grieskamp, Wolfram Schulte, Nikolai Till-
mann, and Lev Nachmanson. Model-Based Testing of Object-Oriented Reactive Systems
with Spec Explorer. In Robert M. Hierons, Jonathan P. Bowen, and Mark Harman, ed-
itors, Formal Methods and Testing, volume 4949 of Lecture Notes in Computer Science,
pages 39–76. Springer, 2008.

188

	License and Copyright Notice
	Introduction
	Towards a Comprehensive Framework
	The CoreASM Modeling Environment
	Related Work

	Abstract State Machines
	Basic ASMs
	Basic Definition
	State Transitions
	Transition Rules
	Interaction with Environment

	Multi-Agent ASMs
	Control State ASMs
	The Railroad Crossing Example
	The Abstract Model
	The Executable Model

	CoreASM: Architectural Overview
	CoreASM Components
	Engine Lifecycle
	Engine Initialization
	Loading Specification
	Execution of Specification
	Concurrently Running Agents

	CoreASM Plugins

	CoreASM: The Kernel
	The Abstract Storage
	The Interpreter
	Notation
	Kernel Expression Interpreter
	Kernel Rule Interpreter
	Operators

	Rules and Updates
	Update Instruction Notation
	Aggregation of Updates
	Composition of Updates

	The Parser
	The Plugin Framework
	Parser Extensions
	Interpreter Extensions
	Abstract Storage Extensions
	Scheduler Extensions
	Extension Point Plugins
	Plugin Service Interface
	Plugin Background

	CoreASM: The Plugins
	Standard Rule Constructs
	Block Rule Plugin
	Conditional Rule Plugin
	The let-rule Plugin
	The extend-rule Plugin
	The choose-rule Plugin
	The forall-rule Plugin
	The case-rule Plugin
	The TurboASM Plugin

	Primitive Data Types
	The Predicate Logic Plugin
	The Number Plugin
	The String Plugin

	Collections
	The Collection Plugin
	The Set Plugin
	The Bag Plugin
	The List Plugin
	The Queue Plugin
	The Stack Plugin
	The Map Plugin

	Auxiliary Plugins
	The Signature Plugin
	The Scheduling Policies Plugin
	IO Plugin
	Step Plugin
	The Observer Plugin
	Math Plugin
	The Time Plugin
	Property Plugin

	The JASMine Plugin
	Requirements and Limitations
	Language Extensions
	Implementing JASMine
	A Simple Example
	Final Remarks

	Implementing CoreASM
	The Architecture
	The CoreASM Engine
	The Kernel
	CoreASM Plugins

	User Interfaces and Tools
	CSDe
	Model Checking CoreASM Specifications

	Conclusions and Perspectives
	Significance of the Contribution
	Future Work

	Supplementary Definitions
	Abstract Storage
	Interpreter
	Scheduler
	Control API
	Plugins
	Choose Rule Plugin
	Forall Rule Plugin
	Predicate Logic Plugin
	Set Plugin
	Math Plugin

	CoreASM Examples
	The Railroad Crossing Example
	The Surveillance Scenario

	Change List
	Index

