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1 Introduction

In this paper, we present an abstract operational semantics
of the Business Process Execution Language for Web
Services (BPEL4WS) (Andrews et al., 2003). BPEL4WS or
Business Process Executive Language (BPEL) for short, is an
XML-based specification language for automated business
processes, proposed by OASIS (WSBPEL-TC, 2004) as
a future standard for the e-business world. It provides

distinctive expressive means for describing the process
interfaces of web-based business protocols and builds on
existing standards and technologies for Web services. In
particular, it is defined on top of the service interaction
model of W3C’s Web Services Description Language
(WSDL) (W3C, 2003). Intuitively, a BPEL business process
orchestrates the interaction between a collection of abstract
WSDL services exchanging messages over a communication
network.

Copyright © 2006 Inderscience Enterprises Ltd.
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Based on the Abstract State Machine (ASM) formalism
and abstraction principles, (Börger and Stark, 2003), we
define a BPEL abstract machine, called BPELAM: a
concise and robust semantic framework for establishing
the key language attributes in a precise and well defined
form. That is, it captures the dynamic properties of
the key language constructs defined in the language
reference manual (Andrews et al., 2003), henceforth called
LRM, including concurrent control structures, dynamic
creation and termination of service instances, communication
primitives, message correlation, event handling and fault
and compensation handling. Dynamic properties of the Web
services interaction model of a BPEL business process are
modelled in abstract operational terms through finite or
infinite machine runs. The concurrent and reactive nature
of Web services and the need for dealing with time-related
aspects in coordinating distributed activities call for an
asynchronous execution model together with an abstract
notion of real time. Hence, the formal definition of BPELAM
is based on the distributed real-time ASM model (Börger and
Stark, 2003), commonly used for dealing with concurrent and
reactive behaviour of complex distributed real-time systems.

The goal of the work presented here, first and foremost, is
to provide a firm semantic foundation – a ’blueprint’ of the
language design – for checking consistency and validity of
semantic properties. Formalisation is crucial to identify and
eliminate deficiencies, such as ambiguities, loose ends and
inconsistencies, that easily remain hidden in the informal
language definition of the LRM (WSBPEL-TC 2004,
Issue #42):

“There is a need for formalism. It will
allow us to not only reason about the
current specification and related issues, but
also uncover issues that would otherwise
go unnoticed. Empirical deduction is not
sufficient.”

The Web services interaction model is characterised by its
concurrent and reactive behaviour, making it particularly
difficult to predict dynamic system properties with a sufficient
degree of detail and precision under all circumstances.
To this end, our formal semantic model of BPEL is meant to
complement the LRM by sharpening informal requirements
into precise specifications. Beyond inspection by analytical
means, we also support experimental validation by making
our formal semantics executable.

Secondly, building on practical experience from previous
work on industrial standards for system specification and
design languages, including the ITU-T language SDL
(Glässer et al., 2003) and the IEEE language VHDL (Börger
et al., 1995), our formalisation approach addresses vital
pragmatic issues. The primary focus in semantic modelling
of complex language properties is to establish the consistency
and completeness of the language requirements specification.
We separate here the concern of specification from that of
verification, where the emphasis is on specification rather
than verification: a proper and reliable formal specification
is a prerequisite for any formal verification attempt and thus
is the first and the most important step.

Another observation is that sensible use of formal
techniques and supporting tools for practical purposes,

such as standardisation, calls for a gradual formalisation
of abstract requirements with a degree of detail and
precision as needed (Glässer et al., 2003). To avoid a gap
between the informal language definition and the formal
semantics, the ability to model the language definition as is
without making compromises is crucial. Consequently, we
adopt here the LRM view and terminology, effectively
formalising the intuitive understanding of BPEL as
directly as possible and in a comprehensible and
objectively verifiable form.

BPELAM yields what is called an ASM ground model
(Börger and Stark, 2003) of the BPEL language definition.
Intuitively, a ground model serves as a precise semantic
foundation for establishing functional requirements and
design specifications in a reliable form without compromising
conceivable refinements (Börger, 2003). A ground model
can be inspected by analytical means (verification) and
empirical techniques (simulation) using machine assistance
as appropriate. Constructing such a ground model means a
major effort, especially, as, in the case of BPEL, a clearly
visible architectural model, which is central for dealing with
intricate semantic issues, is a major shortcoming of (Andrews
et al., 2003). We make this architecture visible as a direct
result of our work presented here.

This paper is organised as follows. Section 2 briefly
summarises the formal semantic framework. Section 3
introduces the core of the hierarchically defined BPELAM
model and Section 4 addresses important extensions to the
BPELAM core. Section 5 discusses related work and Section
6 concludes this paper.

2 Abstract state machines

This section briefly outlines the mathematical framework for
semantic modelling at an intuitive level of understanding
using common notions and structures from discrete
mathematics and computing science. For details, we refer
to the existing literature on the theory of ASMs (Gurevich,
2000) and their applications (Börger and Stark, 2003).

ASMs are best known for their versatility in semantic
modelling of algorithms, architectures, languages, protocols
and virtually all kinds of sequential, parallel and distributed
systems. Widely recognised applications include semantic
foundations of popular industrial system design languages,
like SDL (Glässer et al., 2003), VHDL (Börger et al.,
1995) and SystemC (Müller et al., 2003), programming
languages, like JAVA (Stärk et al., 2001) and C# (Börger
et al., 2005), communication architectures (Glässer and Gu,
2005), embedded control systems (Börger et al., 2000),
et cetera.1

Leaning toward practical applications of formal methods,
the above work resulted in a solid methodological
foundation for building ASM ground models, where the
role and nature of ground models, as discussed by Börger
and Stark (2003), leads itself to the conclusion that the
concept of ground model is inevitably present in every system
design, but often not in an explicit form. The desire
to make ground models visible has been a key factor
in the development of ASM specification, validation and
verification techniques (Börger and Stärk, 2003; Farahbod
and Glässer, 2006).
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2.1 Distributed real-time ASM

The asynchronous computation model of Distributed
Abstract State Machine2 (DASM) defines concurrent and
reactive behaviour as observable in distributed computations
performed by autonomously operating computational agents,
in terms of partially ordered runs.

A DASM M is defined over a given vocabulary
V by its program PM and a non-empty set IM of initial
states. V consists of a finite collection of symbols denoting
mathematical objects and their relation in the formal
representation of M , where we distinguish domain symbols,
function symbols and predicate symbols. Symbols that have
a fixed interpretation regardless of the state of M are called
static; those that may have different interpretations in
different states of M are called dynamic. A state S of M

results from a valid interpretation of all the symbols in V and
constitutes a variant of a first-order structure, one in which
all relations are formally represented as Boolean-valued
functions.

Concurrent control threads in an execution of PM are
modelled by a dynamic set AGENT of computational agents.
This set may change dynamically over runs of M , as required
to deal with varying computational resources. Agents of
M interact with one another and possibly also with the
operational environment of M , by reading and writing shared
locations of a global machine state, where the underlying
semantic model regulates such interactions so that potential
conflicts are resolved according to the definition of partially
ordered runs.

PM consists of a statically defined collection of agent
programs PM1 , ..., PMk

, k ≥ 1, each of which defines the
behaviour of a certain type of agent in terms of state transition
rules. The canonical rule consists of a basic update instruction
of the form

f (t1, t2, . . . , tn) := t0

where f is an n-ary dynamic function symbol and the ti
′s

(0 ≤ i ≤ n) are terms. An update instruction specifies
a pointwise function update, that is, an operation that
replaces an existing function value by a new value to be
associated with the given function arguments. Complex
rules are inductively defined by a number of simple rule
constructors allowing the composition of rules in various
ways (as will be presented in the examples of Sections 3
and 4).

A computation of an individual agent of M , executing
program PMj , is modelled by a finite or infinite sequence of
state transitions of the form

S0

�S0 (PMj )−→ S1

�S1 (PMj )−→ S2

�S2 (PMj )−→ · · ·

such that Si+1 is obtained from Si , for i ≥ 0, by firing
�Si

(PMj ) on Si , where �Si
(PMj ) denotes a finite set of

updates computed by evaluating PMj over Si . Firing an
update set means that all the updates in this set are fired
simultaneously in one atomic step. The result of firing an
update set is defined if and only if the set does not contain
conflicting updates (attempting to assign different values to
the same location).

2.2 Reactivity and time

A DASM M models interactions with a given operational
environment, the part of the external world with which M

interacts, through actions and events as observable at external
interfaces, formally represented by externally controlled
functions. Of particular interest are monitored functions.
Such functions change their values dynamically over runs of
M , although they cannot be updated internally by agents of
M . A typical example is the abstract representation of global
system time.

In a given state S of M , the global time (as measured by
some external clock) is given by a monitored nullary function
now, taking values in a linearly ordered domain TIME. Values
of now increase monotonic over runs of M . Additionally, ′∞′
represents a distinguished value of TIME, such that t < ∞ for
all t ∈ TIME\{∞}. Finite time intervals are given as elements
of a linearly ordered domain DURATION.

2.3 Notational convention

In our formal model we use a signalling method for
agents to communicate with each other. For increased
readability and a clear separation of concerns, we introduce
syntactical abbreviations to employ this method. Precise
semantic definitions of these abbreviations are provided in an
Appendix to this paper.

Identical indentions are used in our formalisation to imply
a parallel composition of rules. Function names are in
italic, rule names are in SansSerif and domain names are
in SMALLCAPS shape.

3 BPEL Abstract machine

This section introduces the core BPELAM architecture
and underlying abstraction principles. Starting with a brief
characterisation of the key language features defined by
Andrews et al. (2003), we describe the process execution
model and its decomposition into execution lifecycles of basic
and structured activities. Based on this abstract architectural
view, we model the pick activity as a concrete example
of a structured activity involving concurrency and real
time among other aspects. Beyond the work presented by
Farahbod et al. (2004, 2006), the model as presented here,
also addresses fault handler agents and the agent interaction
model. Additionally, it explores in more detail the fault
handling behaviour of scope agents and structured activity
agents.

BPEL introduces a stateful model of Web services
interacting with one another by exchanging sequences of
messages. A business process and its partners are defined by
a collection of abstract WSDL services based on the WSDL
model for message interaction. The major parts of a BPEL
process definition consist of

1 partners of the business process, that is, Web services
that this process interacts with,

2 a set of variables that keep the state of the process and,

3 an activity defining the logic of interactions between the
process and its partners.
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Activities that can be performed by a business process are
categorised into basic activities, structured activities and
scope-related activities. Basic activities perform simple
operations like receive, reply, invoke and others. Structured
activities impose an execution order on a collection of
activities and can be nested. Scope-related activities serve
for defining logical units of work and encapsulating the
reversible behaviour of each such unit.

Dynamic process creation: a BPEL process definition
serves as a template for creating business process instances.
Process creation is implicit and is done by defining a start
activity – either a receive or a pick activity that is annotated
with ‘createInstance = yes’– causing a new process instance
to be created upon receiving a matching message. That is,
when a new instance of a business process is created, it
starts its execution by receiving the message that triggered
its creation.

Correlation and data handling: a web service consists of
a number of business process instances; thus, the messages
arriving at a specific port must be delivered to the correct
process instance according to the state of each process
instance. BPEL introduces a generic mechanism for dynamic
binding of messages to process instances, called correlation.
The data handling features of BPEL facilitate dealing with
stateful interactions by providing the ability to keep track of
the internal state of each business process instance.

Long running business transactions: business processes
normally perform transactions with non-negligible duration
involving local updates at business partners. When an error
occurs, it may be required to reverse the effects of some
or even all of the previous activities. This is known as
compensation. The ability to compensate for the effects of
previous activities in case of an exception enables so-called
Long-Running (Business) Transactions (LRTs).

In the process of building the BPELAM model, we have
extracted the key language requirements from the LRM
in form of requirement lists making these requirements
accessible for further extensions, validation and verification
of the model and also to facilitate finding inconsistencies
and ambiguities in the LRM. For a complete list of these
requirements see Farahbod (2004).

3.1 Abstract machine architecture

The BPELAM architecture is composed of three basic
building blocks, referred to as core, data handling extension
and fault and compensation extension. The core handles
dynamic process creation/termination, communication
primitives, message correlation, concurrent control structures,
as well as the following activities: receive, reply, invoke, wait,
empty, sequence, switch, while, pick and flow. The core does
not consider data handling, fault handling and compensation
behaviour; rather these aspects are treated as extensions to the
core (see Section 4). Together with the core, the extensions
form the complete BPELAM.

The vertical organisation of the machine architecture
consists of three layers, called abstract model, intermediate
model and executable model. The abstract model formally
sketches the behaviour of the key BPEL constructs and
introduces the overall organisation of the abstract machine
architecture. The intermediate model, obtained as the result

of the first refinement step, provides a comprehensive
formalisation as required for establishing of and reasoning
about key language properties. Finally, the executable model
provides an abstract executable semantics implemented in
AsmL (Glässer et al., 2004). A GUI facilitates experimental
validation through simulation and animation of abstract
machine runs.

Figure 1 illustrates the overall view of the Web services
interaction model. A BPEL document abstractly defines a
web service consisting of a collection of business process
instances. Each such instance interacts with the external
world through two interface components, called inbox
manager and outbox manager. The inbox manager handles
all the messages that arrive at the web service. If a message
matches a request from a local process instance waiting
for that message, it is forwarded to this process instance.
Additionally, the inbox manager also deals with new process
instance creation. The outbox manager, on the other hand,
forwards outbound messages from process instances to the
network.

Figure 1 BPELAM view of the Web services interaction model
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Inbox manager, outbox manager and process instances are
modelled by three different types of DASM agents: the inbox
manager agent, the outbox manager agent and one uniquely
identified process agent for each of the process instances.

In the following sections, we model the behaviour of the
inbox manager and the process instances in terms of the
execution lifecycles of basic and structured BPEL activities.
For a comprehensive definition of the formal model see
(Farahbod, 2004; Vajihollahi, 2004).

3.2 Inbox manager

The LRM does not explicitly address the mechanism for
assigning inbound messages to matching business process
instances but provides only loose guidelines basically leaving
this problem to the engine (or implementation). We contend
that the message assignment mechanism is essential for
defining the semantics of activities that receive messages,
such as receive and pick. Hence, we collect the scattered LRM
requirements on inbound messages (see the requirement lists
in Farahbod, (2004), Appendix A) and combine them to
model the behaviour of the inbox manager. In our model, the
inbox manager is the entity responsible for assigning inbound
messages to matching process instances.

The inbox manager agent operates on the inbox space, a
possibly empty set of inbound messages. In each computation
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step, it attempts to assign a message to a matching
process instance. The predicate correspond(p, d, m) holds if
message m can be assigned to process instance p according
to the information specified by the input descriptor d.
The predicate match(p, op, m) holds if message m can be
assigned to operation op, which is running in the process
instance p, according to the information specified by the
input descriptor. The inbox manager uses this predicate to
find an appropriate message that matches a waiting process
instance. Correlation initialisation and message matching are
left abstract in the LRM. Consequently, the match predicate
abstracts the details on how the correlation information is
maintained and how the matching is actually performed based
on the underlying data structure.

An input descriptor3 contains information on the waiting
input operation and the waiting agent. If the matching is
successful, the message is assigned to the process instance
by the AssignMessage rule which is further defined in the
intermediate model (Farahbod, 2004; Vajihollahi, 2004).

Another major issue deserving attention is process
creation. The LRM states (Andrews et al., 2003, Section 6.4)
that

“the creation of a process instance in BPEL4WS
is always implicit; activities that receive
messages (that is, receive activities and pick
activities) can be annotated to indicate that the
occurrence of that activity causes a new instance
of the business process to be created. […] When
a message is received by such an activity, an
instance of the business process is created if it
does not already exist.”

Therefore, the execution of such an input activity (called start
activity) is accompanied by the creation of the corresponding
process instance. In other words, a new process instance is
created by execution of its first activity. So the question is,
how can an activity of a process instance be executed before
the process instance is created? Although this approach is
somewhat unconventional, the LRM does not further clarify
process creation. However, because of the importance of
process creation in the lifecycle of business processes, we
capture this requirement as is in the formal model. This is
done by introducing the notion of a dummy process instance
in the inbox manager.

Basically, the dummy process instance is not different
from other process instances in its nature. However, there
is always one and only one such process instance which is
waiting on its start activity. The inbox manager creates a new
process instance whenever a matching message arrives for
a start activity of the dummy process. Modelling process
instance creation is simplified by introducing a nullary
function dummy identifying the dummy process instance.
By receiving the first matching message, the dummy process
instance becomes a normal running process instance and a
new dummy process instance will be created automatically by
the inbox manager updating the value of dummy accordingly.

The DASM program given below specifies the behaviour
of the inbox manager, where self refers to an inbox manager
agent.

InboxManagerProgram ≡
if inboxSpace(self ) �= ∅ then

choose p ∈ PROCESS, m ∈ inboxSpace(self ),
d ∈ waitingSetForInput(p) with correspond(p, d, m)

AssignMessage(p, d, m)

if p = dummyProcess then // process instance creation
new newDummy : Process

dummyProcess := newDummy

where
correspond(p, d, m) ≡

match(p, dscOperation(d), m)

∧ waitingOnIO(dscAgent (d), p)

//waitingOnIO confirms the agent is still waiting

The behaviour of the inbox manager also addresses a
loose end in the LRM. According to the LRM, a receive
activity is a “blocking activity in the sense that it
will not complete until a matching message is received by
the process instance.” (Andrews et al., 2003, Section 11.4)
Therefore, it is implicitly assumed that a matching message
will arrive after the corresponding receive activity has been
executed and it is not clear what happens when a message
arrives before the corresponding receive activity is executed.
Indeed, such a message can be regarded pessimistically
(e.g. discarded) or optimistically (e.g. stored in a buffer),
each of which giving rise to a different implementation
of the language. Thus, it is certainly important for
the LRM to provide a comprehensive description of the
message assignment mechanism. For a more detailed
discussion of the inbox manager and the associated issues
of the LRM, the reader is referred to (Vajihollahi, 2004).
In BPELAM, all incoming messages are buffered before
being processed.

3.3 Activity execution lifecycle

Intuitively, the execution of a process instance is decomposed
into a collection of execution lifecycles for the individual
BPEL activities. We therefore introduce activity agents,
created dynamically by process agents, for executing
structured activities. Each activity agent dynamically creates
additional activity agents for executing nested, structured
activities. Similarly, it creates auxiliary activity agents for
dealing with concurrent control threads (like in flow and
pick4). For instance, to concurrently execute a set of activities,
a flow agent assigns each enclosed activity to a separate flow
thread agent (Farahbod et al, 2004). At any time during the
execution of a process instance, the DASM agents running
under control of this process agent form a tree structure
where each of the subagents monitors the execution of its
child agents (if any) and notifies its parent agent in case of
normal completion or fault. This structure provides a general
framework for execution of BPEL activities. The DASM
agents that model BPEL process execution are jointly called
kernel agents. They include process agents and subprocess
agents. In the core, however, subprocess agents are identical
to activity agents. Figure 2 sketches the process execution
tree of the BPELAM.

Figure 3 illustrates the normal activity execution lifecycle
of kernel agents in the BPELAM core. When created, a kernel
agent is in the Started mode. After initialisation, the kernel
agent starts executing its assigned task by switching its mode
to Running. Upon completion, the agent switches its mode
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to ActivityCompleted and decides (based on the nature of
the assigned task) to either return to the Running mode or
finalise the execution and become Completed. Activity agents
that may execute more than one activity (like sequence) or
execute one activity more than once (like while) can switch
back and forth between the two modes ActivityCompleted and
Running.

Figure 2 Process execution tree
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Figure 3 Activity execution lifecycle: BPELAM core
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As an example, sequence is a simple structured activity
that enforces a sequential execution order on a collection
of activities (henceforth called subactivities). The sequence
programme which models the sequence activity in BPELAM
starts in the Started mode, loads the first subactivity
of the sequence and switches to the Running mode to
execute that subactivity. When the execution of a subactivity
is completed, the programme switches to the Activity
Completed mode. If there are more subactivities to be
executed, the next one is loaded and the mode is switched
back to the Running mode. When all the subactivities

are executed, the mode is changed to the Completed
mode where the programme ends. For brevity, we refer to
(Farahbod, 2004) for the formal definition of the sequence
programme.

3.4 Pick activity

A pick activity identifies a set of events and associates with
each of these events a certain activity. Intuitively, it waits on
one of the events to occur and then performs the respective
activity; thereafter, the pick activity no longer accepts any
other event.5 There are basically two different types of
events: onMessage events and onAlarm events. An
onMessage event occurs as soon as a related message is
received, whereas an onAlarm event is triggered by a timer
mechanism waiting ‘for’ a certain period of time or ‘until’ a
certain deadline is reached.

In BPELAM, each pick activity is modeled by a separate
activity agent, called pick agent. A pick agent is assisted by
two auxiliary agents, a pick message agent that is waiting for
a message to arrive and a pick alarm agent that is watching
a timer. We formalise the semantics of the pick activity in
several steps, each of which addresses a particular property
and then compose the resulting DASM program, called
PickProgram, in which self refers to a pick agent executing
the program.

PickProgram ≡
case execMode(self ) of

Started → PickAgentStarted
Running → PickAgentRunning
ActivityCompleted → FinalizePickAgent
Completed → stop self

When created, the pick agent is in the Started mode and
initialises its execution by creating a pick alarm agent and
a pick message agent. It then switches its mode to Running
and waits for an event to occur – either a message arrives
or a timer expires.

Depending on the event type, either the pick message agent
or the pick alarm agent notifies the pick agent by adding
an event descriptor to the occurredEvents set of the pick
agent. An event descriptor contains information on the event
such as the time of its occurrence. When an event occurs,
the pick agent updates the function chosenAct (with initial
value undef) with the activity associated with the event. Once
the activity is chosen (chosenAct(self) �= undef), the pick
agent performs the chosen activity and remains Running until
the execution of the chosen activity is completed as indicated
by receiving an agent-completed signal. It then switches its
execution mode to Activity-Completed.

PickAgentRunning ≡
if normalExecution(self ) then

onsignal s : agentCompleted
execMode(self ) := ActivityCompleted

otherwise
if chosenAct(self ) = undef then

choose dsc ∈ occurredEvents(self ) with MinTime(dsc)
chosenAct(self ) := onEventAct(edscEvent(dsc))
//onEventAct of an event descriptor is the activity
//that is associated with that event descriptor

else
ExecuteActivity(chosenAct(self )))
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Finalising a running pick agent includes informing its
parent agent that the execution is completed and
changing the execution mode to Completed. As illustrated
in Figure 3, the Completed mode leads to the agent’s
termination.

Due to the space limitations, we do not show here
the definitions of PickAgent-Started, FinalisePickAgent, as
well as the programs of the pick message and the pick
alarm agents, but refer to (Farahbod, 2004) for a complete
description.

4 Extensions to the BPELAM core

Our two-dimensional refinement approach (Farahbod, 2004)
facilitates refinements of the core to capture additional
aspects of BPEL through incremental extensions (Börger,
2003) and enables step by step elucidation of the
extensions through a combination of data refinement and
procedural refinement approaches (Börger, 2003; Farahbod,
2004). For a clear separation of concerns and also for
robustness of the formal semantic model, the aspects of data
handling, fault handling and compensation behaviour are
carefully separated from the core of the language. To this end,
the core of BPELAM provides a basic, yet comprehensive,
model for abstract processes in which data handling focuses
on protocol relevant data in the form of correlations while
payload data values are left unspecified (Andrews et al.,
2003).

Compensation and fault handling behaviour is a fairly
complex issue in the definition of BPEL. An in-depth
analysis in fact shows that the semantics of fault and
compensation handling, even when ignoring all the
syntactical issues, is related to more than 40 individual
requirements spread out all over the LRM. These
requirements (some of them comprise up to 10 subitems)
address a variety of separate issues related to the core
semantics, general constraints and various special cases
(see (Farahbod, 2004, Appendix A)). While most of these
requirements are defined with painstaking accuracy, such
definitions are not free of ambiguities and imprecisions
inherent to natural languages. Consequently, complementary
formal descriptions are vital for turning abstract requirements
into precise specifications. Specifically, they are beneficial
since:

1 analysing a requirement to construct a formal
specification often provides a different view to the
requirement (and to the system under inspection)
potentially uncovering possible problems, such as
ambiguities, inconsistencies and loose ends;

2 formalisation of requirements along with their informal
description (the idea of literate specifications (Johnson,
1996)) provides a sensible way of gaining precision
without loosing intelligibility.

A thorough treatment of the extensions is beyond the space
limitations of this paper. We present an overview of the fault
handling behaviour in the following sections and refer to
Farahbod (2004) for a comprehensive description of other
non-trivial issues.

4.1 Scope activity and fault handling

The scope activity is the core construct of data handling,
fault handling and compensation behaviour in BPEL.A scope
activity is a wrapper around a logical unit of work (a block
of BPEL code) that provides local variables, a fault handler
and a compensation handler. The fault handler of a scope is a
set of catch clauses defining how the scope should respond to
different types of faults. A compensation handler is a wrapper
around a BPEL activity that compensates the effects of the
execution of the scope. Each scope has a primary activity
which defines the normal behaviour of the scope. This activity
can be any basic or structured activity. BPEL allows scopes
to be nested arbitrarily. In BPELAM, we model scopes by
defining a new type of activity agents, called scope agents.

Fault handling in BPEL can be conceived as a mode switch
from the normal execution of the process (Andrews et al.,
2009). When a fault occurs in the execution of an activity,
the fault is thrown up to the innermost enclosing scope.
If the scope handles the fault successfully, it sends an exited
signal to its parent scope and ends gracefully, but if the fault
is rethrown from the fault handler or a new fault has occurred
during the fault handling procedure, the scope sends a faulted
signal along with the thrown fault to its parent scope. The
fault is thrown up from scopes to parent scopes until a scope
handles it successfully. A successful fault handling switches
the execution mode back to normal. If a fault reaches the
global scope, the process execution terminates (Andrews et
al., 2003).

The normal execution lifecycle of kernel agents (Figure 3)
needs to be extended to comprise the fault handling mode
of BPEL processes. The occurrence of a fault causes the
kernel agent (be it an activity agent or the main process) to
leave its normal execution lifecycle and enter a fault handling
lifecycle. Figure 4 illustrates the extended execution lifecycle
of BPEL activities.

Figure 4 Activity execution lifecycle: fault handling
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In BPELAM, whenever a subprocess agent encounters a
fault, the agent leaves its normal execution mode and enters
the ExecutionFault mode. If this agent is neither a scope
agent nor a process agent, it should also notify its parent
agent of the fault. This behaviour is performed by the
TransitionToExecutionFault rule. For every kernel agent, the
dynamic function faultThrown (defined on kernel agents)
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keeps the current fault which is thrown in the execution of
the agent. The default value of faultThrown is undef.

TransitionToExecutionFault(fault) ≡
execMode(self ) := ExecutionFault
faultThrown(self ) := fault
if ¬isScopeAgent(self ) ∧ ¬isProcessAgent(self ) then

trigger s : agentFaulted for parentAgent(self )
fault(s) := fault

A scope agent, in the ExecutionFault mode, terminates its
enclosed activity, creates a fault handler assigns the fault to
that handler and switches to the FaultHandling mode. If the
fault handler finishes successfully, the scope agent enters the
Exited mode indicating that this agent exited its execution
with a successful fault handling process. The difference
between a scope which has finished its execution in the
Completed mode and a scope that has finished in the Exited
mode is reflected by the way scopes are compensated, which
we do not further address in this paper. The behaviour of
scope agents in the Execution-Fault mode is specified by the
following rule:

ScopeAgentExecutionFault ≡
TerminateEnclosedActivity(self )
CreateAndExecuteFaultHandler(self )
execMode(self ) := FaultHandling

Termination of enclosed activities (of any subprocess agent)
is modelled by the TerminateEnclosedActivity rule. If the
enclosed activity of an agent is a basic activity, it needs
to be terminated according to the requirements addressed
by the LRM (Andrews et al., 2003, Section 13.4.2). These
requirements are modelled by the TerminateBasicActivity
rule. To terminate structured activities, the enclosing agent
(e.g. a scope agent) sends a forcedTermination signal to its
child agent(s).

TerminateEnclosedActivity(agent) ≡
TerminateBasicActivity(agent)
forall child in childAgents(agent)

trigger s : forcedTermination for child
fault(s) := bpwsForcedTermination

For the complete specification of TerminateBasicActivity we
refer to (Farahbod, 2004).

4.2 Pick activity: extended

The structured activities of the core (activity agents) are
also refined to capture the fault handling behaviour of
BPEL. The well-defined activity execution lifecycle of
BPELAM (Figures 3 and 4) along with the fact that
the fault handling behaviour of BPEL is mostly centered
in the scope activity, enable us to generally extend the
behaviour of structured activities by defining two new rules:
HandleExceptionsInRunningMode and WaitForTermination.
As an example, the pick agent program of Section 3.4 is
refined as follows:

PickProgram ≡
PickProgramcore

case execMode(self ) of
Running → HandleExceptionsInRunningMode
ExecutionFault → WaitForTermination
Faulted → stop self

Activity agents react to a fault by informing their parent agent
of the fault and stay in the ExecutionFault mode until they
receive a notification for termination. If the parent agent is
not a scope agent, the parent agent reacts in the same way
and the fault is passed upwards until it reaches a scope agent.
The scope agent handles the fault as described in Section 4.1
and sends a termination notification to its child agent. Upon
receiving the notification, a subprocess agent that is waiting
for a termination notification in turn passes it to its child
agents (if any) and enters the Faulted mode, where it then
terminates.

The normal execution of activity agents in the Running
mode is extended by the following rule:

HandleExceptionsInRunningMode ≡
if faultExtensionSignal(self ) then

onsignal s : agentExited
execMode(self ) := ActivityCompleted

otherwise
onsignal s : agentFaulted

TransitionToExecutionFault(f ault (s))

otherwise
onsignal s : forcedTermination

faultThrown(self ) := fault(s)
execMode(self ) := ExecutionFault

The faultExtensionSignal predicate holds only if the agent has
received a signal related to fault and compensation handling.
The normalExecution predicate in PickAgentRunning
(Section 3.4) is defined as the negation of this predicate
which facilitate conservative refinement of the core model.
If a subprocess agent receives a termination notification6

while in its normal execution mode, it enters the
ExecutionFault mode, where it terminates its enclosed
activity and goes to the Faulted mode.

In the ExecutionFault mode, if a termination notification is
received, the pick agent terminates its enclosed activity and
goes to the Faulted mode. Analogously to the Completed
mode, subprocess agents terminate their execution in the
Faulted mode. For the complete extended pick agent program
see (Farahbod, 2004).

WaitForTermination ≡
if isForcedTerminated(self ) then

execMode(self ) := Faulted
TerminateEnclosedActivity(self )

else
onsignal s : forcedTermination

faultThrown(self ) := fault(s)
execMode(self ) := Faulted
TerminateEnclosedActivity(self )

where
isForcedTerminated(a) ≡

faultThrown(a) = bpwsForcedTermination

The LRM does not precisely specify how activity termination
(due to a fault) takes place. It states that when a fault occurs
in a scope, the fault handler begins by implicitly terminating
all activities inside the scope. Further, in (Andrews et al.,
2003, Appendix A) on standard faults, the LRM states that
forcedTermination is used to terminate activities enclosed in
a scope. However, it is not clear how the forcedTermination
fault is used to terminate enclosed activities: it is not
stated whether the faulted activities should wait for the
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forcedTermination fault after they encounter a fault or they
should terminate spontaneously. See Farahbod (2004) for an
example and more details on this discussion.

4.3 Fault Handlers

We use DASM agents to also model fault handlers. The
behaviour of fault handler agents is formally defined by the
following program.

FaultHandlerProgram ≡
case execMode(self ) of

Started → FaultHandlerStarted
Running →

FaultHandlerRunningNormal
FaultHandlerRunningExtended

ActivityCompleted → FinalizeKernelAgent
Completed → stop self
ExecutionFault → FaultHandlerExecutionFault
Faulted → stop self

According to the LRM, the normal behaviour of a
fault handler begins with selecting a catch clause that
matches the fault that is being handled. The function
faultHandlerCatchSet is defined in BPELAM to provide the
set of catch clauses in the fault handler of a scope activity. The
abstract predicate matchingCatch defined on catch clauses is
used to find the matching catch clause of a fault. The chosen
catch clause is then stored in executingCatch for further
processing.

FaultHandlerStarted ≡
execMode(self ) := Running
choose c ∈ faultHandlerCatchSet(handlerScope(self ))

with matchingCatch(c, faultThrown(self ))
executingCatch(self ) := c

To model the main behaviour of fault handlers (i.e. fault
handler agents in the Running mode), analogous to structured
activities in BPEL, we can split their behaviour into two parts:
normal execution and fault-handling extended execution.
The normal behaviour of a fault handler in the Running
mode (normalExecution(self ) = true) is similar to other
structured activities. If it receives an agent-completed signal,
it switches to the ActivityCompleted mode and finishes its
execution; otherwise, it executes the selected catch clause.
However, according to the LRM (Andrews et al., 2003,
Section 13.4), if no catch clause is selected, the fault is
rethrown. This is done by executing a predefined catch clause,
called rethrowCatchClause.7

FaultHandlerRunningNormal ≡
if normalExecution(self ) then

onsignal s : agentCompleted
execMode(self ) := ActivityCompleted

otherwise
if executingCatch(self ) = undef then

executingCatch(self ) := rethrowCatchClause
else

ExecuteActivity(catchActivity(executingCatch(self )))

While in the Running mode, a fault handler may receive
fault handling signals (faultExtensionsSignal(self ) = true)
generated due to an internal fault in its enclosed activity.
If the internal fault is already handled properly, an agent-
exited signal is received by the fault handler agent, otherwise

an agent-faulted signal is received. According to the LRM
(Andrews et al., 2003, Section 13.4.2), “if the scope has
already experienced an internal fault and invoked a fault
handler, then […] the forced termination has no effect.” Thus,
fault handler agents, while in the Running mode, do not
process forced-termination signals sent by enclosing scopes.

FaultHandlerRunningExtended ≡
if faultExtensionSignal(self ) then

onsignal s : agentExited
execMode(self ) := ActivityCompleted

otherwise
onsignal s : agentFaulted

TransitionToExecutionFault(fault(s))

Occurrence of an unhandled internal fault in the execution
of a fault handler changes the execution mode of the
fault handler to ExecutionFault. In this mode, according
to the LRM (Andrews et al., 2003, Section 13.4.2), the
fault handler must terminate its execution prematurely.
The FaultHandlerExecutionFault, presented below, models
this behaviour by terminating the execution of the
enclosed activity and changing the execution mode of the
fault handler to Faulted, which leads to the termination of
the fault handler.

FaultHandlerExecutionFault ≡
TerminateEnclosedActivity(self )
execMode(self ) := Faulted

For a complete specification of fault handling and
compensation behaviour in BPELAM, we refer the reader
to Farahbod (2004).

5 Related work

There are various research activities applying formal methods
to define, analyse and verify Web services orchestration
languages. A group at Humboldt University is working on
formalisations of BPEL for analysis, graphics and semantics.
Petri-net models of Web services are used in Martens (2005)
to analyse essential properties like usability, soundness and
compatibility, which is a starting point for deciding the
equivalence of two Web services. Furthermore, the group
uses both Petri-nets and ASMs to formalise the semantics
of BPEL. A pattern-based Petri-net semantics for BPEL
activities is provided by Stahl (2004) (in German), however,
it fails to provide a comprehensive model for handling the
data and process instantiation. In Schmidt and Stahl (2004),
a small business process is translated into a Petri-net model
without addressing fault handling, compensation handling
and timing aspects. The ultimate goal is verification of
business processes; however, the feasibility of verifying
larger business processes is still subject to future work. The
ASM semantic model in Fahland and Reisig (2005) closely
follows our work in Farahbod (2004)with a slightly different
architecture and minor technical differences in handling basic
activities and variables. The model presented by Fahland
(2005) extends our work in order to address issues like
dead-path-elimination and correlation handling, which we
do not cover in much detail. However, Fahland (2005) does
not provide all the means for building an executable model
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whereas our model in Farahbod (2004) is directly executable.
Thus, by collaborating closely with the group at Humboldt
University, we hope to integrate both models into a complete
and executable formal model of BPEL. Along this line, our
notion of inbox and outbox manager was adopted in Fahland
(2005) to bring the two models closer to each other and serve
as a basis for a joint work on BPEL.

Formal verification of Web services is also addressed in
several works (Arias-Fistens et al., 2005; Ferrara, 2004;
Foster et al., 2005; Martens, 2003; Narayanan and McIlraith,
2002; Ouyang et al., 2005b; van Breugei and Koshkina,
2005). The approach in Martens (2003) is based on Petri-
nets, while in van Breugal and Koshkina (2005), a process
algebra is used to derive a structural operational semantics
of BPEL as a formal basis for verifying properties of
the specification. It focuses on the main control flow
constructs and abstracts from data and time related issues,
as well as fault and compensation behaviour. The authors
point out the superiority of this approach to Petri-net
based approaches in capturing advanced synchronisation
patterns like Dead-Path-Elimination (DPE). The approach
presented by Ferrara (2004) also uses process algebra and
corresponding tools to provide a framework for design and
verification of BPEL processes. While issues regarding
process instantiation are not captured, it provides support
for fault handling and compensation behaviour. WofBPEL
is a verification tool for performing static analysis on
BPEL processes translated into Petri-nets (Ouyang et al.,
2005b) using the formal semantics of (Ouyang et al.,
2005a). LTSA WS-Engineer is another verification tool
which aims at BPEL composition (Foster et al., 2005).
Scenario-based designs of business processes in Message
Sequence Charts (MSCs) and BPEL implementations are
both translated to Finite State Process (FSP) models and
compiled to a Labeled Transition System (LTS) which is
used as a basis for verification. The framework presented by
Arias-Fisteus et al., (2005) called VERBUS, is also based
on finite state machines. The main objective is to achieve
a modular and extensible framework by using a common
formal model layer for translating BPEL processes and as a
basis for verification. In Narayanan and McIlraith (2002),
a model-theoretic semantics for the DAML-S language
(based on situation calculus) is presented, which facilitates
simulation, composition, testing and verifying compositions
of Web services.

A critical analysis of BPEL based on workflow data and
control-flow patterns, as well as a comparative summary
of formalisations of BPEL, is provided in van der Aalst
et al., (2005).

6 Conclusion

We propose a BPEL abstract machine as a well-defined and
robust computational framework for establishing the key
language attributes of BPEL in the form of a comprehensive
abstract operational semantics based on the ASM formalism
and abstraction principles. Our model provides a concise and
precise formalisation of all the dynamic semantic properties
that are characteristic for BPEL. At the same time, it
reflects the abstract operational view and terminology of the

informal language definition in a direct and intuitive way.
The hierarchical organisation and the modular structure of the
abstract machine architecture support a gradual formalisation
of complex requirements and enhances a clear separation of
concerns. As a result of building this ASM ground model, we
actually discovered a number of deficiencies in the language
definition, some of them are addressed in this paper (Section
3.2 and 4.2); for a comprehensive list, as well as a proposal
for a new activity providing synchronous request-response
services (addressing difficulties discussed by WSBPEL-TC
(2004, Issue #26, #49, #50, #120 and #123), the reader is
referred elsewhere (Farahbod, 2004; Vajihollahi, 2004).

The focus in this paper is on formal specification rather
than on formal verification, understanding the former as the
main prerequisite for the latter. Since there is no way to prove
correctness or completeness of the initial transformation from
the language designers’ intuitive understanding to a proper
mathematical representation, this formalisation step, which
forms the foundation for any subsequent refinement steps,
deserves particular attention to avoid misconceptions with
most fatal consequences.

Beyond reasoning about the language design and checking
consistency and validity of semantic properties, our BPEL
abstract machine also serves as a platform for experimental
validation through simulation and testing. As a result of
the final refinement step, we obtain an abstract executable
semantics encoded in AsmL, an industrial design language
(Glässer et al., 2004). An AsmL model of the core of an
earlier version of the BPELAM has been used for simulation
purposes (Vajihollahi, 2004). Experimental validation of
high-level design specifications clearly offers additional
benefits in design exploration and for eliminating deficiencies
prior to low-level coding. We plan to develop an advanced
executable model of our BPEL abstract machine using
CoreASM (Farahbold et al., 2005), a novel open source
ASM tool environment (under development). Additionally,
we also plan to explore the use of ASM model checking
techniques (Tang, 2006) for the formal verification of certain
key properties of the abstract machine model.

Finally, the dynamic nature of standardisation, being
an ongoing and potentially open-ended activity, calls for
flexibility and robustness of the formalisation approach.
To this end, we feel that the ASM formalism and
abstraction principles offer a sensible compromise between
mathematical elegance and practical relevance – already
proved useful for practical purposes in other standardisation
contexts (Glässer et al., 2003).
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Notes
1See also the ASM website at www.eecs.umich.edu/gasm.
2See (Farahbod and Glässer, 2006) for a tutorial introduction.
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3In BPELAM, input activities (such as receive and pick) add an
input descriptor to the waitingSetForInput for every message they
expect to receive.

4One may argue that pick is not a concurrent control construct,
but as we will see in Section 3.4, it can naturally be viewed
as such.

5Regarding the case that several events occur at a time, the LRM is
somewhat loose declaring that the choice “is dependent on both
timing and implementation” (Andrews et al., 2003).

6Such a notification would come from a parent agent as a result of
a fault in a concurrent activity.

7While we were modelling the default fault handling behaviour of
scopes, we identified the need for a special activity to allow a
catchall clause to rethrow its original fault to its parent scope.
Such an activity is missing in the LRM. At the same time,
this issue was addressed by the OASIS WSBPEL Technical
Committee and was resolved using a similar approach by
introducing a <rethrow/> construct.
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Appendix

Agent interaction model

To avoid changing the state of an agent by its child agent(s) and to
make the model more flexible for future changes and extensions, we
provide a simple yet elegant framework for agents to communicate
with each other. This framework is first introduced by (Farahbod,
2004). Here we present a slightly refined version of the original
idea.

Agents communicate through exchange of signals. Every kernel
agent can send a signal to another agent using the following
operation:

trigger s : signal-type for agent
Rule1

A kernel agent responds to a received signal using the
following operation:

onsignal s : signal-type
Rule1

otherwise
Rule2

The two rule constructs trigger and onsignal form an
interface to our agent communication framework. To each
process instance p, we assign a set of signals signalSet(p)

which acts as a container of the signals sent to p or any
subprocess agent of p. For every signal, signalSource and
signalTarget indicate the source and the target agents of that
signal.

When an agent triggers a signal for another agent, a new
signal element is created, its type, source and target agents
are assigned and the signal is added to the signal set of the
target agent (which is the signal set of its root process).
The following syntactical transformation provides this
behaviour:

trigger s : signal-type for agent
Rule

≡
extend SIGNAL with s

signalType(s) := signal-type
signalSource(s) := self
signalTarget(s) := agent
add s to signalSet(rootProcess(self ))
Rule

To respond to a signal, the target agent looks for an element
of that signal in its corresponding signal set, removes that
element from the signal set and performs the intended
operations.

onsignal s : signal-type
Rule1

otherwise
Rule2

≡
choose s ∈ signalSet(rootProcess(self )) with

signalType(s) = signal-type ∧ signalTarget(s) = self
remove s from signalSet(rootProcess(self ))
Rule1

ifnone
Rule2


